Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 15, Issue 4 (Jan 2007)

Issues

Alexandroff One Point Compactification

Czesław Byliński
Published Online: 2008-06-09 | DOI: https://doi.org/10.2478/v10037-007-0019-2

Alexandroff One Point Compactification

In the article, I introduce the notions of the compactification of topological spaces and the Alexandroff one point compactification. Some properties of the locally compact spaces and one point compactification are proved.

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169-176, 1997.Google Scholar

  • [3] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics, 7(1):35-43, 1998.Google Scholar

  • [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Google Scholar

  • [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Google Scholar

  • [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [9] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.Google Scholar

  • [10] Zbigniew Karno. On nowhere and everywhere dense subspaces of topological spaces. Formalized Mathematics, 4(1):137-146, 1993.Google Scholar

  • [11] Artur Korniłowicz. Introduction to meet-continuous topological lattices. Formalized Mathematics, 7(2):279-283, 1998.Google Scholar

  • [12] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Google Scholar

  • [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Google Scholar

  • [14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [19] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.Google Scholar

About the article


Published Online: 2008-06-09

Published in Print: 2007-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0019-2.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in