[1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[2] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(3):507-513, 1990.Google Scholar

[3] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[4] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[5] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[6] Czesław Byliński. and Piotr Rudnicki. Bounding boxes for compact sets in ε^{2}. *Formalized Mathematics*, 6(3):427-440, 1997.Google Scholar

[7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Formalized Mathematics*, 8(1):93-102, 1999.Google Scholar

[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from $R to $R and integrability for continuous functions. *Formalized Mathematics*, 9(2):281-284, 2001.Google Scholar

[9] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar

[10] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. *Formalized Mathematics*, 13(1):73-79, 2005.Google Scholar

[11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. *Formalized Mathematics*, 1(2):273-275, 1990.Google Scholar

[12] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. *Formalized Mathematics*, 1(4):703-709, 1990.Google Scholar

[13] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[14] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. *Formalized Mathematics*, 8(1):103-106, 1999.Google Scholar

[15] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. *Formalized Mathematics*, 2(2):213-216, 1991.Google Scholar

[16] Konrad Raczkowski and Paweł Sadowski. Real function continuity. *Formalized Mathematics*, 1(4):787-791, 1990.Google Scholar

[17] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. *Formalized Mathematics*, 1(4):797-801, 1990.Google Scholar

[18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Formalized Mathematics*, 1(4):777-780, 1990.Google Scholar

[19] Andrzej Trybulec. Subsets of complex numbers. *To appear in Formalized Mathematics.*Google Scholar

[20] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar

[21] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar

[22] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4):341-347, 2003.Google Scholar

[23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. *Formalized Mathematics*, 1(3):445-449, 1990.Google Scholar

[24] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[25] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

[26] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. *Formalized Mathematics*, 7(2):255-263, 1998.Google Scholar

## Comments (0)