[4] Józef Białas. The σ-additive measure theory. *Formalized Mathematics*, 2(2):263-270, 1991.Google Scholar

[5] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[6] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[7] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in ε^{2}. *Formalized Mathematics*, 6(3):427-440, 1997.Google Scholar

[9] Noboru Endou and Yasunari Shidama. Integral of measurable function. *Formalized Mathematics*, 14(2):53-70, 2006.Google Scholar

[10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495-500, 2001.Google Scholar

[11] Adam Grabowski. On the Kuratowski limit operators. *Formalized Mathematics*, 11(4):399-409, 2003.Google Scholar

[12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Formalized Mathematics*, 1(3):477-481, 1990.Google Scholar

[13] Jarosław Kotowicz. Convergent sequences and the limit of sequences. *Formalized Mathematics*, 1(2):273-275, 1990.Google Scholar

[14] Jarosław Kotowicz. Monotone real sequences. Subsequences. *Formalized Mathematics*, 1(3):471-475, 1990.Google Scholar

[15] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[16] Andrzej Nedzusiak. σ-fields and probability. *Formalized Mathematics*, 1(2):401-407, 1990.Google Scholar

[17] Andrzej Trybulec. Subsets of complex numbers. *To appear in Formalized Mathematics.*Google Scholar

[18] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar

[19] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[20] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

[21] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. *Formalized Mathematics*, 13(3):375-381, 2005.Google Scholar

[1] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. *Formalized Mathematics*, 2(1):163-171, 1991.Google Scholar

[3] Józef Białas. Series of positive real numbers. Measure theory. *Formalized Mathematics*, 2(1):173-183, 1991.Google Scholar

## Comments (0)