Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
See all formats and pricing
More options …
Volume 16, Issue 1


The First Mean Value Theorem for Integrals

Keiko Narita / Noboru Endou / Yasunari Shidama
Published Online: 2009-03-20 | DOI: https://doi.org/10.2478/v10037-008-0008-0

The First Mean Value Theorem for Integrals

In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.

MML identifier: MESFUNC7, version: 7.8.09 4.97.1001

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.Google Scholar

  • [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.Google Scholar

  • [6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.Google Scholar

  • [7] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.Google Scholar

  • [8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Google Scholar

  • [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [12] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.Google Scholar

  • [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.Google Scholar

  • [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.Google Scholar

  • [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.Google Scholar

  • [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.Google Scholar

  • [17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [18] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [19] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.Google Scholar

  • [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

About the article

Published Online: 2009-03-20

Published in Print: 2008-01-01

Citation Information: Formalized Mathematics, Volume 16, Issue 1, Pages 51–55, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-008-0008-0.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in