Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 16, Issue 1 (Jan 2008)

Issues

Stability of n-Bit Generalized Full Adder Circuits (GFAs). Part II

Katsumi Wasaki
Published Online: 2009-03-20 | DOI: https://doi.org/10.2478/v10037-008-0011-5

Stability of n-Bit Generalized Full Adder Circuits (GFAs). Part II

We continue to formalize the concept of the Generalized Full Addition and Subtraction circuits (GFAs), define the structures of calculation units for the Redundant Signed Digit (RSD) operations, then prove its stability of the calculations. Generally, one-bit binary full adder assumes positive weights to all of its three binary inputs and two outputs. We define the circuit structure of two-types n-bit GFAs using the recursive construction to use the RSD arithmetic logical units that we generalize full adder to have both positive and negative weights to inputs and outputs. The motivation for this research is to establish a technique based on formalized mathematics and its applications for calculation circuits with high reliability.

MML identifier: GFACIRC2, version: 7.8.09 4.97.1001

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [4] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Mathematics, 5(3):367-380, 1996.Google Scholar

  • [5] Grzegorz Bancerek, Shin'nosuke Yamaguchi, and Katsumi Wasaki. Full adder circuit. Part II. Formalized Mathematics, 10(1):65-71, 2002.Google Scholar

  • [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [9] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Formalized Mathematics, 5(2):283-295, 1996.Google Scholar

  • [10] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, I. Formalized Mathematics, 5(2):227-232, 1996.Google Scholar

  • [11] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, II. Formalized Mathematics, 5(2):215-220, 1996.Google Scholar

  • [12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Google Scholar

  • [13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.Google Scholar

  • [14] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.Google Scholar

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [16] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.Google Scholar

  • [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [18] Shin'nosuke Yamaguchi, Katsumi Wasaki, and Nobuhiro Shimoi. Generalized full adder circuits (GFAs). Part I. Formalized Mathematics, 13(4):549-571, 2005.Google Scholar

About the article


Published Online: 2009-03-20

Published in Print: 2008-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-008-0011-5.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in