## Helly Property for Subtrees

We prove, following [5, p. 92], that any family of subtrees of a finite tree satisfies the Helly property.

MML identifier: HELLY, version: 7.8.09 4.97.1001

Show Summary Details# Formalized Mathematics

### (a computer assisted approach)

#### Open Access

# Helly Property for Subtrees

## Helly Property for Subtrees

## Comments (0)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2015: 0.134

Source Normalized Impact per Paper (SNIP) 2015: 0.686

Impact per Publication (IPP) 2015: 0.296

Jessica Enright / Piotr Rudnicki

We prove, following [5, p. 92], that any family of subtrees of a finite tree satisfies the Helly property.

MML identifier: HELLY, version: 7.8.09 4.97.1001

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.

*Formalized Mathematics*, 1(1):41-46, 1990.[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.

*Formalized Mathematics*, 1(1):107-114, 1990.[3] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.[4] Agata Darmochwał. Finite sets.

*Formalized Mathematics*, 1(1):165-167, 1990.[5] M. Ch. Golumbic.

*Algorithmic Graph Theory and Perfect Graphs.*Academic Press, New York, 1980.[6] Gilbert Lee. Trees and graph components.

*Formalized Mathematics*, 13(2):271-277, 2005.[7] Gilbert Lee. Walks in graphs.

*Formalized Mathematics*, 13(2):253-269, 2005.[8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures.

*Formalized Mathematics*, 13(2):235-252, 2005.[9] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains.

*Formalized Mathematics*, 5(3):297-304, 1996.[10] Beata Padlewska. Families of sets.

*Formalized Mathematics*, 1(1):147-152, 1990.[11] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem.

*Formalized Mathematics*, 6(3):335-338, 1997.[12] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.

Please log in or register to comment.

Log inRegisterHave you read our house rules for communicating on De Gruyter Online?

Published Online: 2009-03-20Published in Print: 2008-01-01Citation Information:Formalized Mathematics. Volume 16, Issue 2, Pages 91–96, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-008-0013-3, March 2009This content is open access.