Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 16, Issue 2

Issues

Heron's Formula and Ptolemy's Theorem

Marco Riccardi
Published Online: 2009-03-20 | DOI: https://doi.org/10.2478/v10037-008-0014-2

Heron's Formula and Ptolemy's Theorem

The goal of this article is to formalize some theorems that are in the [17] on the web. These are elementary theorems included in every handbook of Euclidean geometry and trigonometry: the law of cosines, the Heron's formula, the isosceles triangle theorem, the intersecting chords theorem and the Ptolemy's theorem.

MML identifier: EUCLID 6, version: 7.8.09 4.97.1001

  • [1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.Google Scholar

  • [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [6] Wenpai Chang, Yatsuka Nakamura, and Piotr Rudnicki. Inner products and angles of complex numbers. Formalized Mathematics, 11(3):275-280, 2003.Google Scholar

  • [7] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.Google Scholar

  • [8] Agata Darmochwał and Yatsuka Nakamura. The topological space ε2/T. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.Google Scholar

  • [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Google Scholar

  • [11] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003.Google Scholar

  • [12] Yatsuka Nakamura. General Fashoda meet theorem for unit circle and square. Formalized Mathematics, 11(3):213-224, 2003.Google Scholar

  • [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Google Scholar

  • [14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Google Scholar

  • [15] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [17] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/freek/100

  • [18] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.Google Scholar

About the article


Published Online: 2009-03-20

Published in Print: 2008-01-01


Citation Information: Formalized Mathematics, Volume 16, Issue 2, Pages 97–101, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-008-0014-2.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in