[1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[3] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. *Formalized Mathematics*, 5(4):485-492, 1996.Google Scholar

[6] Józef Białas. Group and field definitions. *Formalized Mathematics*, 1(3):433-439, 1990.Google Scholar

[7] Czesław Byliński. Binary operations. *Formalized Mathematics*, 1(1):175-180, 1990.Google Scholar

[8] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[9] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[10] Krzysztof Hryniewiecki. Recursive definitions. *Formalized Mathematics*, 1(2):321-328, 1990.Google Scholar

[11] Andrzej Kondracki. The Chinese Remainder Theorem. *Formalized Mathematics*, 6(4):573-577, 1997.Google Scholar

[12] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. *Formalized Mathematics*, 12(2):179-186, 2004.Google Scholar

[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335-342, 1990.Google Scholar

[14] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887-890, 1990.Google Scholar

[15] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. *Formalized Mathematics*, 1(5):829-832, 1990.Google Scholar

[16] Robert Milewski. Fundamental theorem of algebra. *Formalized Mathematics*, 9(3):461-470, 2001.Google Scholar

[17] Robert Milewski. The ring of polynomials. *Formalized Mathematics*, 9(2):339-346, 2001.Google Scholar

[18] Piotr Rudnicki. Little Bezout theorem (factor theorem). *Formalized Mathematics*, 12(1):49-58, 2004.Google Scholar

[19] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. *Formalized Mathematics*, 9(1):95-110, 2001.Google Scholar

[20] Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. *Formalized Mathematics*, 8(1):29-34, 1999.Google Scholar

[21] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Schur's theorem on the stability of networks. *Formalized Mathematics*, 14(4):135-142, 2006.Google Scholar

[22] Christoph Schwarzweller and Andrzej Trybulec. The evaluation of multivariate polynomials. *Formalized Mathematics*, 9(2):331-338, 2001.Google Scholar

[23] Dariusz Surowik. Cyclic groups and some of their properties - part I. *Formalized Mathematics*, 2(5):623-627, 1991.Google Scholar

[24] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar

[25] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115-122, 1990.Google Scholar

[26] Andrzej Trybulec. Many-sorted sets. *Formalized Mathematics*, 4(1):15-22, 1993.Google Scholar

[27] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(3):501-505, 1990.Google Scholar

[28] Wojciech A. Trybulec. Groups. *Formalized Mathematics*, 1(5):821-827, 1990.Google Scholar

[29] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291-296, 1990.Google Scholar

[30] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. *Formalized Mathematics*, 2(1):41-47, 1991.Google Scholar

[31] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[32] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

## Comments (0)