## Several Higher Differentiation Formulas of Special Functions

In this paper, we proved some basic properties of higher differentiation, and higher differentiation formulas of special functions [4].

MML identifier: HFDIFF 1, version: 7.8.10 4.100.1011

Show Summary Details# Several Higher Differentiation Formulas of Special Functions

#### Open Access

## Several Higher Differentiation Formulas of Special Functions

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Junjie Zhao / Xiquan Liang / Li Yan

In this paper, we proved some basic properties of higher differentiation, and higher differentiation formulas of special functions [4].

MML identifier: HFDIFF 1, version: 7.8.10 4.100.1011

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.

*Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar[2] Czesław Byliński. The complex numbers.

*Formalized Mathematics*, 1(3):507-513, 1990.Google Scholar[3] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar[4] Chuanzhang Chen.

*Mathematical Analysis.*Higher Education Press, Beijing, 1978.Google Scholar[5] Krzysztof Hryniewiecki. Basic properties of real numbers.

*Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar[6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers.

*Formalized Mathematics*, 1(4):703-709, 1990.Google Scholar[7] Jarosław Kotowicz. Real sequences and basic operations on them.

*Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar[8] Rafał Kwiatek. Factorial and Newton coefficients.

*Formalized Mathematics*, 1(5):887-890, 1990.Google Scholar[9] Akira Nishino and Yasunari Shidama. The Maclaurin expansions.

*Formalized Mathematics*, 13(3):421-425, 2005.Google Scholar[10] Beata Perkowska. Functional sequence from a domain to a domain.

*Formalized Mathematics*, 3(1):17-21, 1992.Google Scholar[11] Konrad Raczkowski. Integer and rational exponents.

*Formalized Mathematics*, 2(1):125-130, 1991.Google Scholar[12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability.

*Formalized Mathematics*, 1(4):797-801, 1990.Google Scholar[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.

*Formalized Mathematics*, 1(4):777-780, 1990.Google Scholar[14] Yasunari Shidama. The Taylor expansions.

*Formalized Mathematics*, 12(2):195-200, 2004.Google Scholar[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers.

*Formalized Mathematics*, 1(3):445-449, 1990.Google Scholar[16] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[17] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar[18] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio.

*Formalized Mathematics*, 7(2):255-263, 1998.Google Scholar

**Published Online**: 2009-03-20

**Published in Print**: 2008-01-01

**Citation Information: **Formalized Mathematics, Volume 16, Issue 2, Pages 141–145, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-008-0020-4.

This content is open access.

## Comments (0)