[1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of *n*-dimensional topological space. *Formalized Mathematics*, 11(2):179-183, 2003.Google Scholar

[2] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[5] Czesław Byliński. Basic functions and operations on functions. *Formalized Mathematics*, 1(1):245-254, 1990.Google Scholar

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar

[7] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[8] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[9] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[10] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar

[11] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar

[12] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. *Formalized Mathematics*, 6(3):411-415, 1997.Google Scholar

[13] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[14] Agata Darmochwał. The Euclidean space. *Formalized Mathematics*, 2(4):599-603, 1991.Google Scholar

[15] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. *Formalized Mathematics*, 11(1):23-28, 2003.Google Scholar

[16] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Linear combinations in real unitary space. *Formalized Mathematics*, 11(1):17-22, 2003.Google Scholar

[17] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. *Formalized Mathematics*, 13(4):577-580, 2005.Google Scholar

[18] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[19] Yatsuka Nakamura. Sorting operators for finite sequences. *Formalized Mathematics*, 12(1):1-4, 2004.Google Scholar

[20] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. *Formalized Mathematics*, 1(3):555-561, 1990.Google Scholar

[21] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(1):147-152, 1990.Google Scholar

[22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(1):223-230, 1990.Google Scholar

[23] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. *Formalized Mathematics*, 15(3):127-136, 2007, doi:10.2478/v10037-007-00014-7.CrossrefGoogle Scholar

[24] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar

[25] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115-122, 1990.Google Scholar

[26] Wojciech A. Trybulec. Basis of real linear space. *Formalized Mathematics*, 1(5):847-850, 1990.Google Scholar

[27] Wojciech A. Trybulec. Binary operations on finite sequences. *Formalized Mathematics*, 1(5):979-981, 1990.Google Scholar

[28] Wojciech A. Trybulec. Linear combinations in real linear space. *Formalized Mathematics*, 1(3):581-588, 1990.Google Scholar

[29] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. *Formalized Mathematics*, 1(2):297-301, 1990.Google Scholar

[30] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291-296, 1990.Google Scholar

[31] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[32] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

[33] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[34] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. *Formalized Mathematics*, 9(3):471-474, 2001.Google Scholar

## Comments (0)