Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 17, Issue 1 (Jan 2009)

Issues

The Real Vector Spaces of Finite Sequences are Finite Dimensional

Yatsuka Nakamura / Artur Korniłowicz
  • Institute of Computer Science, University of Białystok, Sosnowa 64, 15-887 Białystok, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nagato Oya / Yasunari Shidama
Published Online: 2009-03-20 | DOI: https://doi.org/10.2478/v10037-009-0001-2

The Real Vector Spaces of Finite Sequences are Finite Dimensional

In this paper we show the finite dimensionality of real linear spaces with their carriers equal Rn. We also give the standard basis of such spaces. For the set Rn we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal n.

MML identifier: EUCLID 7, version: 7.11.01 4.117.1046

  • [1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.Google Scholar

  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [5] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.Google Scholar

  • [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Google Scholar

  • [12] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. Formalized Mathematics, 6(3):411-415, 1997.Google Scholar

  • [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [14] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Google Scholar

  • [15] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.Google Scholar

  • [16] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Linear combinations in real unitary space. Formalized Mathematics, 11(1):17-22, 2003.Google Scholar

  • [17] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.Google Scholar

  • [18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [19] Yatsuka Nakamura. Sorting operators for finite sequences. Formalized Mathematics, 12(1):1-4, 2004.Google Scholar

  • [20] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.Google Scholar

  • [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Google Scholar

  • [23] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127-136, 2007, doi:10.2478/v10037-007-00014-7.CrossrefGoogle Scholar

  • [24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Google Scholar

  • [25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [26] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.Google Scholar

  • [27] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.Google Scholar

  • [28] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Google Scholar

  • [29] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.Google Scholar

  • [30] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [34] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.Google Scholar

About the article


Published Online: 2009-03-20

Published in Print: 2009-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0001-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marco Riccardi
Formalized Mathematics, 2012, Volume 20, Number 1
[2]
Takao Inoué, Adam Naumowicz, Noboru Endou, and Yasunari Shidama
Formalized Mathematics, 2011, Volume 19, Number 1, Page 1
[3]
Takao Inoué, Noboru Endou, and Yasunari Shidama
Formalized Mathematics, 2010, Volume 18, Number 4

Comments (0)

Please log in or register to comment.
Log in