## Some Operations on Quaternion Numbers

In this article, we give some equality and basic theorems about quaternion numbers, and some special operations.

Show Summary Details# Some Operations on Quaternion Numbers

#### Open Access

## Some Operations on Quaternion Numbers

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Bo Li / Xiquan Liang / Pan Wang / Yanping Zhuang

In this article, we give some equality and basic theorems about quaternion numbers, and some special operations.

[1] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar[2] Czesław Byliński. The complex numbers.

*Formalized Mathematics*, 1(3):507-513, 1990.Google Scholar[3] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar[4] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar[5] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar[6] Fuguo Ge. Inner products, group, ring of quaternion numbers.

*Formalized Mathematics*, 16(2):135-139, 2008, doi:10.2478/v10037-008-0019-x.CrossrefGoogle Scholar[7] Krzysztof Hryniewiecki. Basic properties of real numbers.

*Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar[8] Xiquan Liang and Fuguo Ge. The quaternion numbers.

*Formalized Mathematics*, 14(4):161-169, 2006, doi:10.2478/v10037-006-0020-1.CrossrefGoogle Scholar[9] Andrzej Trybulec. Enumerated sets.

*Formalized Mathematics*, 1(1):25-34, 1990.Google Scholar[10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers.

*Formalized Mathematics*, 1(3):445-449, 1990.Google Scholar[11] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[12] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar[13] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

**Published Online**: 2009-07-14

**Published in Print**: 2009-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0006-x.

This content is open access.

## Comments (0)