## Kolmogorov's Zero-One Law

This article presents the proof of Kolmogorov's zero-one law in probability theory. The independence of a family of σ-fields is defined and basic theorems on it are given.

Show Summary Details# Kolmogorov's Zero-One Law

#### Open Access

## Kolmogorov's Zero-One Law

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Agnes Doll

This article presents the proof of Kolmogorov's zero-one law in probability theory. The independence of a family of σ-fields is defined and basic theorems on it are given.

[1] Grzegorz Bancerek. König's theorem.

*Formalized Mathematics*, 1(3):589-593, 1990.Google Scholar[2] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.

*Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar[4] Czesław Byliński. Binary operations applied to finite sequences.

*Formalized Mathematics*, 1(4):643-649, 1990.Google Scholar[5] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar[6] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar[7] Czesław Byliński. Partial functions.

*Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar[8] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar[9] Czesław Byliński. The sum and product of finite sequences of real numbers.

*Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar[10] Agata Darmochwał. Finite sets.

*Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar[11] Jarosław Kotowicz. Real sequences and basic operations on them.

*Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar[12] Franz Merkl. Dynkin's lemma in measure theory.

*Formalized Mathematics*, 9(3):591-595, 2001.Google Scholar[13] Andrzej Nędzusiak. Probability.

*Formalized Mathematics*, 1(4):745-749, 1990.Google Scholar[14] Andrzej Nędzusiak. σ-fields and probability.

*Formalized Mathematics*, 1(2):401-407, 1990.Google Scholar[15] Beata Padlewska. Families of sets.

*Formalized Mathematics*, 1(1):147-152, 1990.Google Scholar[16] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set.

*Formalized Mathematics*, 5(2):233-236, 1996.Google Scholar[17] Andrzej Trybulec. Binary operations applied to functions.

*Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar[18] Andrzej Trybulec and Agata Darmochwał. Boolean domains.

*Formalized Mathematics*, 1(1):187-190, 1990.Google Scholar[19] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[20] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar[21] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

**Published Online**: 2009-07-14

**Published in Print**: 2009-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0008-8.

This content is open access.

## Comments (0)