## Kolmogorov's Zero-One Law

This article presents the proof of Kolmogorov's zero-one law in probability theory. The independence of a family of σ-fields is defined and basic theorems on it are given.

Show Summary Details# Kolmogorov's Zero-One Law

#### Open Access

## Kolmogorov's Zero-One Law

## About the article

## Citing Articles

*Entertainment Computing*, 2013, Volume 4, Number 2, Page 105

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Agnes Doll

This article presents the proof of Kolmogorov's zero-one law in probability theory. The independence of a family of σ-fields is defined and basic theorems on it are given.

[1] Grzegorz Bancerek. König's theorem.

*Formalized Mathematics*, 1(3):589-593, 1990.Google Scholar[2] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.

*Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar[4] Czesław Byliński. Binary operations applied to finite sequences.

*Formalized Mathematics*, 1(4):643-649, 1990.Google Scholar[5] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar[6] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar[7] Czesław Byliński. Partial functions.

*Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar[8] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar[9] Czesław Byliński. The sum and product of finite sequences of real numbers.

*Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar[10] Agata Darmochwał. Finite sets.

*Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar[11] Jarosław Kotowicz. Real sequences and basic operations on them.

*Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar[12] Franz Merkl. Dynkin's lemma in measure theory.

*Formalized Mathematics*, 9(3):591-595, 2001.Google Scholar[13] Andrzej Nędzusiak. Probability.

*Formalized Mathematics*, 1(4):745-749, 1990.Google Scholar[14] Andrzej Nędzusiak. σ-fields and probability.

*Formalized Mathematics*, 1(2):401-407, 1990.Google Scholar[15] Beata Padlewska. Families of sets.

*Formalized Mathematics*, 1(1):147-152, 1990.Google Scholar[16] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set.

*Formalized Mathematics*, 5(2):233-236, 1996.Google Scholar[17] Andrzej Trybulec. Binary operations applied to functions.

*Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar[18] Andrzej Trybulec and Agata Darmochwał. Boolean domains.

*Formalized Mathematics*, 1(1):187-190, 1990.Google Scholar[19] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[20] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar[21] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

**Published Online**: 2009-07-14

**Published in Print**: 2009-01-01

**Citation Information: **Formalized Mathematics, Volume 17, Issue 2, Pages 73–77, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0008-8.

This content is open access.

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Yi Yang, Shuigeng Zhou, and Yuan Li

## Comments (0)