Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 17, Issue 2 (Jan 2009)

Issues

Second-Order Partial Differentiation of Real Binary Functions

Bing Xie / Xiquan Liang / Xiuzhuan Shen
Published Online: 2009-07-14 | DOI: https://doi.org/10.2478/v10037-009-0009-7

Second-Order Partial Differentiation of Real Binary Functions

In this article we define second-order partial differentiation of real binary functions and discuss the relation of second-order partial derivatives and partial derivatives defined in [17].

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Google Scholar

  • [7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn.Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.CrossrefGoogle Scholar

  • [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Google Scholar

  • [10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.Google Scholar

  • [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.Google Scholar

  • [13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Google Scholar

  • [14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Google Scholar

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [17] Bing Xie, Xiquan Liang, and Hongwei Li. Partial differentiation of real binary functions. Formalized Mathematics, 16(4):333-338, 2008, doi:10.2478/v10037-008-0041-z.CrossrefGoogle Scholar

About the article


Published Online: 2009-07-14

Published in Print: 2009-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0009-7.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Takao Inoué
Formalized Mathematics, 2010, Volume 18, Number 2

Comments (0)

Please log in or register to comment.
Log in