Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 17, Issue 2 (Jan 2009)

Issues

Solution of Cubic and Quartic Equations

Marco Riccardi
  • Casella Postale 49, 54038 Montignoso, Italy
Published Online: 2009-07-14 | DOI: https://doi.org/10.2478/v10037-009-0012-z

Solution of Cubic and Quartic Equations

In this article, the principal n-th root of a complex number is defined, the Vieta's formulas for polynomial equations of degree 2, 3 and 4 are formalized. The solution of quadratic equations, the Cardan's solution of cubic equations and the Descartes-Euler solution of quartic equations in terms of their complex coefficients are also presented [5].

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [3] Yuzhong Ding and Xiquan Liang. Solving roots of polynomial equation of degree 2 and 3 with complex coefficients. Formalized Mathematics, 12(2):85-92, 2004.Google Scholar

  • [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [5] G.A. Korn and T.M. Korn. Mathematical Handbook for Scientists and Engineers. Dover Publication, New York, 2000.Google Scholar

  • [6] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [7] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9(3):455-460, 2001.Google Scholar

  • [8] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507-509, 1991.Google Scholar

  • [9] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.Google Scholar

  • [10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Google Scholar

  • [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [12] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.Google Scholar

About the article


Published Online: 2009-07-14

Published in Print: 2009-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0012-z.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in