Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 17, Issue 2 (Jan 2009)

Issues

Solution of Cubic and Quartic Equations

Marco Riccardi
Published Online: 2009-07-14 | DOI: https://doi.org/10.2478/v10037-009-0012-z

Solution of Cubic and Quartic Equations

In this article, the principal n-th root of a complex number is defined, the Vieta's formulas for polynomial equations of degree 2, 3 and 4 are formalized. The solution of quadratic equations, the Cardan's solution of cubic equations and the Descartes-Euler solution of quartic equations in terms of their complex coefficients are also presented [5].

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [3] Yuzhong Ding and Xiquan Liang. Solving roots of polynomial equation of degree 2 and 3 with complex coefficients. Formalized Mathematics, 12(2):85-92, 2004.Google Scholar

  • [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [5] G.A. Korn and T.M. Korn. Mathematical Handbook for Scientists and Engineers. Dover Publication, New York, 2000.Google Scholar

  • [6] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [7] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9(3):455-460, 2001.Google Scholar

  • [8] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507-509, 1991.Google Scholar

  • [9] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.Google Scholar

  • [10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Google Scholar

  • [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [12] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.Google Scholar

About the article


Published Online: 2009-07-14

Published in Print: 2009-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0012-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kai Ming Li and Sheng Liu
The Journal of the Acoustical Society of America, 2011, Volume 130, Number 3, Page 1103

Comments (0)

Please log in or register to comment.
Log in