[1] M. Aigner and G. M. Ziegler. *Proofs from THE BOOK.* Springer-Verlag, Berlin Heidelberg New York, 2004.Google Scholar

[2] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[4] Grzegorz Bancerek. König's theorem. *Formalized Mathematics*, 1(3):589-593, 1990.Google Scholar

[5] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[7] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. *Formalized Mathematics*, 2(1):163-171, 1991.Google Scholar

[8] Czesław Byliński. Basic functions and operations on functions. *Formalized Mathematics*, 1(1):245-254, 1990.Google Scholar

[9] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(3):507-513, 1990.Google Scholar

[10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar

[11] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[12] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[13] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[14] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar

[15] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar

[16] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[17] Yoshinori Fujisawa and Yasushi Fuwa. The Euler's function. *Formalized Mathematics*, 6(4):549-551, 1997.Google Scholar

[18] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. *Formalized Mathematics*, 7(2):317-321, 1998.Google Scholar

[19] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar

[20] Krzysztof Hryniewiecki. Recursive definitions. *Formalized Mathematics*, 1(2):321-328, 1990.Google Scholar

[21] Magdalena Jastrzebska and Adam Grabowski. On the properties of the Möbius function. *Formalized Mathematics*, 14(1):29-36, 2006, doi:10.2478/v10037-006-0005-0.CrossrefGoogle Scholar

[22] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. *Formalized Mathematics*, 12(2):179-186, 2004.Google Scholar

[23] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. *Formalized Mathematics*, 3(2):279-288, 1992.Google Scholar

[24] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887-890, 1990.Google Scholar

[25] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. *Formalized Mathematics*, 1(5):829-832, 1990.Google Scholar

[26] W. J. LeVeque. *Fundamentals of Number Theory.* Dover Publication, New York, 1996.Google Scholar

[27] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. *Formalized Mathematics*, 4(1):83-86, 1993.Google Scholar

[28] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(1):147-152, 1990.Google Scholar

[29] Piotr Rudnicki. Little Bezout theorem (factor theorem). *Formalized Mathematics*, 12(1):49-58, 2004.Google Scholar

[30] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. *Formalized Mathematics*, 6(3):335-338, 1997.Google Scholar

[31] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. *Formalized Mathematics*, 9(1):95-110, 2001.Google Scholar

[32] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar

[33] Andrzej Trybulec. Tuples, projections and Cartesian products. *Formalized Mathematics*, 1(1):97-105, 1990.Google Scholar

[34] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4):341-347, 2003.Google Scholar

[35] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. *Formalized Mathematics*, 1(3):445-449, 1990.Google Scholar

[36] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(3):501-505, 1990.Google Scholar

[37] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. *Formalized Mathematics*, 1(3):569-573, 1990.Google Scholar

[38] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[39] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

[40] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[41] Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura. Bessel's inequality. *Formalized Mathematics*, 11(2):169-173, 2003.Google Scholar

## Comments (0)