[1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[3] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[5] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. *Formalized Mathematics*, 2(1):163-171, 1991.Google Scholar

[6] Józef Białas. Series of positive real numbers. Measure theory. *Formalized Mathematics*, 2(1):173-183, 1991.Google Scholar

[7] Józef Białas. The σ-additive measure theory. *Formalized Mathematics*, 2(2):263-270, 1991.Google Scholar

[8] Józef Białas. Some properties of the intervals. *Formalized Mathematics*, 5(1):21-26, 1996.Google Scholar

[9] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[10] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[11] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[12] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar

[13] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar

[14] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[15] Noboru Endou and Yasunari Shidama. Integral of measurable function. *Formalized Mathematics*, 14(2):53-70, 2006, doi:10.2478/v10037-006-0008-x.CrossrefGoogle Scholar

[16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. *Formalized Mathematics*, 9(3):491-494, 2001.Google Scholar

[17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495-500, 2001.Google Scholar

[18] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar

[19] Grigory E. Ivanov. Definition of convex function and Jensen's inequality. *Formalized Mathematics*, 11(4):349-354, 2003.Google Scholar

[20] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[21] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. *Formalized Mathematics*, 3(2):279-288, 1992.Google Scholar

[22] Keiko Narita, Noboru Endou, and Yasunari Shidama. Integral of complex-valued measurable function. *Formalized Mathematics*, 16(4):319-324, 2008, doi:10.2478/v10037-008-0039-6.CrossrefGoogle Scholar

[23] Andrzej Nędzusiak. Probability. *Formalized Mathematics*, 1(4):745-749, 1990.Google Scholar

[24] Andrzej Nędzusiak. σ-fields and probability. *Formalized Mathematics*, 1(2):401-407, 1990.Google Scholar

[25] Jan Popiołek. Introduction to probability. *Formalized Mathematics*, 1(4):755-760, 1990.Google Scholar

[26] Yasunari Shidama and Noboru Endou. Integral of real-valued measurable function. *Formalized Mathematics*, 14(4):143-152, 2006, doi:10.2478/v10037-006-0018-8.CrossrefGoogle Scholar

[27] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4):341-347, 2003.Google Scholar

[28] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[29] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[30] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. The relevance of measure and probability, and definition of completeness of probability. *Formalized Mathematics*, 14(4):225-229, 2006, doi:10.2478/v10037-006-0026-8.CrossrefGoogle Scholar

## Comments (0)