[1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[3] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar

[6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[7] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[8] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[9] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar

[10] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[11] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[12] Andrzej Nędzusiak. Probability. *Formalized Mathematics*, 1(4):745-749, 1990.Google Scholar

[13] Jan Popiołek. Introduction to probability. *Formalized Mathematics*, 1(4):755-760, 1990.Google Scholar

[14] Piotr Rudnicki. Little Bezout theorem (factor theorem). *Formalized Mathematics*, 12(1):49-58, 2004.Google Scholar

[15] Victor Shoup. A computational introduction to number theory and algebra. *Cambridge University Press*, 2008.Google Scholar

[16] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[17] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

[18] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[19] Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of probability, and addition of matrices of real elements. *Formalized Mathematics*, 14(3):101-108, 2006, doi:10.2478/v10037-006-0012-1.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.