## Riemann Integral of Functions from R into *R*^{n}

^{n}

In this article, we define the Riemann Integral of functions from R into *R ^{n}*, and prove the linearity of this operator. The presented method is based on [21].

Show Summary Details# Riemann Integral of Functions from R into *R*^{n}

#### Open Access

## Riemann Integral of Functions from R into *R*^{n}

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Keiichi Miyajima / Yasunari Shidama

In this article, we define the Riemann Integral of functions from R into *R ^{n}*, and prove the linearity of this operator. The presented method is based on [21].

[1] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.

*Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar[3] Czesław Byliński. Binary operations applied to finite sequences.

*Formalized Mathematics*, 1(4):643-649, 1990.Google Scholar[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets.

*Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar[5] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar[6] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar[7] Czesław Byliński. Partial functions.

*Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar[8] Czesław Byliński. The sum and product of finite sequences of real numbers.

*Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar[9] Agata Darmochwał. The Euclidean space.

*Formalized Mathematics*, 2(4):599-603, 1991.Google Scholar[10] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas.

*Formalized Mathematics*, 8(1):93-102, 1999.Google Scholar[11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space.

*Formalized Mathematics*, 13(4):577-580, 2005.Google Scholar[12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces

*R*.^{n}*Formalized Mathematics*, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.CrossrefGoogle Scholar[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions.

*Formalized Mathematics*, 9(2):281-284, 2001.Google Scholar[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral.

*Formalized Mathematics*, 9(1):191-196, 2001.Google Scholar[15] Krzysztof Hryniewiecki. Basic properties of real numbers.

*Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar[16] Jarosław Kotowicz. Convergent sequences and the limit of sequences.

*Formalized Mathematics*, 1(2):273-275, 1990.Google Scholar[17] Jarosław Kotowicz. Real sequences and basic operations on them.

*Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

*Formalized Mathematics*, 1(1):223-230, 1990.Google Scholar[19] Jan Popiołek. Real normed space.

*Formalized Mathematics*, 2(1):111-115, 1991.Google Scholar[20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.

*Formalized Mathematics*, 1(4):777-780, 1990.Google Scholar[21] Murray R. Spiegel.

*Theory and Problems of Vector Analysis.*McGraw-Hill, 1974.Google Scholar[22] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[23] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar[24] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

**Published Online**: 2009-07-14

**Published in Print**: 2009-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0021-y.

This content is open access.

## Comments (0)