Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 17, Issue 2

Issues

Equivalence of Deterministic and Nondeterministic Epsilon Automata

Michał Trybulec
Published Online: 2009-07-14 | DOI: https://doi.org/10.2478/v10037-009-0023-9

Equivalence of Deterministic and Nondeterministic Epsilon Automata

Based on concepts introduced in [14], semiautomata and leftlanguages, automata and right-languages, and langauges accepted by automata are defined. The powerset construction is defined for transition systems, semiautomata and automata. Finally, the equivalence of deterministic and nondeterministic epsilon automata is shown.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.Google Scholar

  • [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153-159, 2006, doi:10.2478/v10037-006-0019-7.CrossrefGoogle Scholar

  • [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Google Scholar

  • [13] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics, 15(1):11-15, 2007, doi:10.2478/v10037-007-0002-y.CrossrefGoogle Scholar

  • [14] Michał Trybulec. Labelled state transition systems. Formalized Mathematics, 17(2):163-171, 2009, doi: 10.2478/v10037-009-0019-5.CrossrefGoogle Scholar

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [16] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.Google Scholar

  • [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

About the article


Published Online: 2009-07-14

Published in Print: 2009-01-01


Citation Information: Formalized Mathematics, Volume 17, Issue 2, Pages 193–199, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-009-0023-9.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in