[1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar

[2] Grzegorz Bancerek. König's theorem. *Formalized Mathematics*, 1(**3**):589-593, 1990.Google Scholar

[3] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91-96, 1990.Google Scholar

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.Google Scholar

[5] Józef Białas. Group and field definitions. *Formalized Mathematics*, 1(**3**):433-439, 1990.Google Scholar

[6] Nicolas Bourbaki. *Elements of Mathematics. Algebra I. Chapters 1-3.* Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.Google Scholar

[7] Czesław Byliński. Binary operations. *Formalized Mathematics*, 1(**1**):175-180, 1990.Google Scholar

[8] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar

[9] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

[10] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar

[11] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar

[12] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. *Formalized Mathematics*, 4(**1**):109-113, 1993.Google Scholar

[13] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(**1**):147-152, 1990.Google Scholar

[14] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Formalized Mathematics*, 1(**3**):441-444, 1990.Google Scholar

[15] Andrzej Trybulec. Tuples, projections and Cartesian products. *Formalized Mathematics*, 1(**1**):97-105, 1990.Google Scholar

[16] Andrzej Trybulec. Moore-Smith convergence. *Formalized Mathematics*, 6(**2**):213-225, 1997.Google Scholar

[17] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. *Formalized Mathematics*, 2(**4**):573-578, 1991.Google Scholar

[18] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

[19] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. *Formalized Mathematics*, 9(**4**):825-829, 2001.Google Scholar

[20] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(**1**):73-83, 1990.Google Scholar

[21] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar

## Comments (0)