## Integrability Formulas. Part I

In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, and the polynomial function.

Show Summary Details# Integrability Formulas. Part I

#### Open Access

## Integrability Formulas. Part I

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Bo Li / Na Ma

In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, and the polynomial function.

[1] Czesław Byliński. Partial functions.

*Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar[2] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas.

*Formalized Mathematics*, 8(**1**):93-102, 1999.Google Scholar[3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions.

*Formalized Mathematics*, 9(**2**):281-284, 2001.Google Scholar[4] Krzysztof Hryniewiecki. Basic properties of real numbers.

*Formalized Mathematics*, 1(**1**):35-40, 1990.Google Scholar[5] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos.

*Formalized Mathematics*, 13(**1**):73-79, 2005.Google Scholar[6] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers.

*Formalized Mathematics*, 1(**3**):477-481, 1990.Google Scholar[7] Jarosław Kotowicz. Partial functions from a domain to a domain.

*Formalized Mathematics*, 1(**4**):697-702, 1990.Google Scholar[8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers.

*Formalized Mathematics*, 1(**4**):703-709, 1990.Google Scholar[9] Jarosław Kotowicz. Real sequences and basic operations on them.

*Formalized Mathematics*, 1(**2**):269-272, 1990.Google Scholar[10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot.

*Formalized Mathematics*, 16(**2**):147-158, 2008, doi:10.2478/v10037-008-0021-3.CrossrefGoogle Scholar[11] Konrad Raczkowski. Integer and rational exponents.

*Formalized Mathematics*, 2(**1**):125-130, 1991.Google Scholar[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity.

*Formalized Mathematics*, 1(**4**):787-791, 1990.Google Scholar[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.

*Formalized Mathematics*, 1(**4**):777-780, 1990.Google Scholar[14] Yasunari Shidama. The Taylor expansions.

*Formalized Mathematics*, 12(**2**):195-200, 2004.Google Scholar[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers.

*Formalized Mathematics*, 1(**3**):445-449, 1990.Google Scholar[16] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar[17] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar[18] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio.

*Formalized Mathematics*, 7(**2**):255-263, 1998.Google Scholar

**Published Online**: 2011-01-05

**Published in Print**: 2010-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-010-0004-z.

This content is open access.

## Comments (0)