## Fixpoint Theorem for Continuous Functions on Chain-Complete Posets

This text includes the definition of chain-complete poset, fix-point theorem on it, and the definition of the function space of continuous functions on chain-complete posets [10].

Show Summary Details# Fixpoint Theorem for Continuous Functions on Chain-Complete Posets

#### Open Access

## Fixpoint Theorem for Continuous Functions on Chain-Complete Posets

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Kazuhisa Ishida / Yasunari Shidama

This text includes the definition of chain-complete poset, fix-point theorem on it, and the definition of the function space of continuous functions on chain-complete posets [10].

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.

*Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar[2] Grzegorz Bancerek. Bounds in posets and relational substructures.

*Formalized Mathematics*, 6(**1**):81-91, 1997.Google Scholar[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions.

*Formalized Mathematics*, 5(**4**):485-492, 1996.Google Scholar[4] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar[5] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar[6] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar[7] Adam Grabowski. On the category of posets.

*Formalized Mathematics*, 5(**4**):501-505, 1996.Web of ScienceGoogle Scholar[8] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem.

*Formalized Mathematics*, 6(**3**):335-338, 1997.Google Scholar[9] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma.

*Formalized Mathematics*, 1(**2**):387-393, 1990.Google Scholar[10] Glynn Winskel.

*The Formal Semantics of Programming Languages.*The MIT Press, 1993.Google Scholar[11] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(**1**):73-83, 1990.Google Scholar[12] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar[13] Edmund Woronowicz and Anna Zalewska. Properties of binary relations.

*Formalized Mathematics*, 1(**1**):85-89, 1990.Google Scholar[14] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps.

*Formalized Mathematics*, 6(**1**):123-130, 1997.Google Scholar

**Published Online**: 2011-01-05

**Published in Print**: 2010-01-01

**Citation Information: **Formalized Mathematics, Volume 18, Issue 1, Pages 47–51, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-010-0006-x.

This content is open access.

## Comments (0)