Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 18, Issue 1

Issues

Representation of the Fibonacci and Lucas Numbers in Terms of Floor and Ceiling

Magdalena Jastrzębska
Published Online: 2011-01-05 | DOI: https://doi.org/10.2478/v10037-010-0010-1

Representation of the Fibonacci and Lucas Numbers in Terms of Floor and Ceiling

In the paper we show how to express the Fibonacci numbers and Lucas numbers using the floor and ceiling operations.

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.Google Scholar

  • [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [4] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.Google Scholar

  • [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [6] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.Google Scholar

  • [7] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Google Scholar

  • [8] Robert M. Solovay. Fibonacci numbers. Formalized Mathematics, 10(2):81-83, 2002.Google Scholar

  • [9] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Google Scholar

  • [10] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [11] Piotr Wojtecki and Adam Grabowski. Lucas numbers and generalized Fibonacci numbers. Formalized Mathematics, 12(3):329-333, 2004.Google Scholar

About the article


Published Online: 2011-01-05

Published in Print: 2010-01-01


Citation Information: Formalized Mathematics, Volume 18, Issue 1, Pages 77–80, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-010-0010-1.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in