Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 18, Issue 2 (Jan 2010)

Issues

The Sum and Product of Finite Sequences of Complex Numbers

Keiichi Miyajima / Takahiro Kato
Published Online: 2011-01-05 | DOI: https://doi.org/10.2478/v10037-010-0014-x

The Sum and Product of Finite Sequences of Complex Numbers

This article extends the [10]. We define the sum and the product of the sequence of complex numbers, and formalize these theorems. Our method refers to the [11].

  • [1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.Google Scholar

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Google Scholar

  • [6] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.Google Scholar

  • [7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Google Scholar

  • [11] Keith E. Hirst. Numbers, Sequences and Series. Butterworth-Heinemann, 1984.Google Scholar

  • [12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.Google Scholar

  • [13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Google Scholar

  • [14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Google Scholar

  • [15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

About the article


Published Online: 2011-01-05

Published in Print: 2010-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-010-0014-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Artur Korniłowicz and Karol Pąk
Formalized Mathematics, 2017, Volume 25, Number 2

Comments (0)

Please log in or register to comment.
Log in