## Miscellaneous Facts about Open Functions and Continuous Functions

In this article we give definitions of open functions and continuous functions formulated in terms of "balls" of given topological spaces.

Show Summary Details# Formalized Mathematics

### (a computer assisted approach)

#### Open Access

# Miscellaneous Facts about Open Functions and Continuous Functions

## Miscellaneous Facts about Open Functions and Continuous Functions

## Comments (0)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2015: 0.134

Source Normalized Impact per Paper (SNIP) 2015: 0.686

Impact per Publication (IPP) 2015: 0.296

Artur Korniłowicz

In this article we give definitions of open functions and continuous functions formulated in terms of "balls" of given topological spaces.

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.

*Formalized Mathematics*, 1(1):41-46, 1990.[2] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(**1**):91-96, 1990.[3] Leszek Borys. Paracompact and metrizable spaces.

*Formalized Mathematics*, 2(**4**):481-485, 1991.[4] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(**1**):55-65, 1990.[5] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(**1**):153-164, 1990.[6] Agata Darmochwał. The Euclidean space.

*Formalized Mathematics*, 2(**4**):599-603, 1991.[7] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts.

*Formalized Mathematics*, 2(**4**):605-608, 1991.[8] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces.

*Formalized Mathematics*, 1(**3**):607-610, 1990.[9] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in ϵn/T.

*Formalized Mathematics*, 12(**3**):301-306, 2004.[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

*Formalized Mathematics*, 1(**1**):223-230, 1990.[11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.

*Formalized Mathematics*, 1(**4**):777-780, 1990.[12] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(**1**):181-186, 1990.[13] Mariusz Żynel and Adam Guzowski.

*T*_{0}topological spaces.*Formalized Mathematics*, 5(**1**):75-77, 1996.

Please log in or register to comment.

Log inRegisterHave you read our house rules for communicating on De Gruyter Online?

Published Online: 2011-01-05Published in Print: 2010-01-01Citation Information:Formalized Mathematics. Volume 18, Issue 3, Pages 171–174, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-010-0019-5, January 2011This content is open access.