[1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.Google Scholar

[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529-536, 1990.Google Scholar

[4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar

[5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

[6] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar

[7] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar

[8] Agata Darmochwał. The Euclidean space. *Formalized Mathematics*, 2(**4**):599-603, 1991.Google Scholar

[9] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. *Formalized Mathematics*, 13(**4**):577-580, 2005.Google Scholar

[10] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces R^{n}. *Formalized Mathematics*, 15(**2**):65-72, 2007, doi:10.2478/v10037-007-0008-5.CrossrefGoogle Scholar

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(**1**):35-40, 1990.Google Scholar

[12] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. *Formalized Mathematics*, 12(**3**):321-327, 2004.Google Scholar

[13] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into R^{n}. *Formalized Mathematics*, 17(**2**):179-185, 2009, doi: 10.2478/v10037-009-0021-y.CrossrefGoogle Scholar

[14] Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. *Formalized Mathematics*, 17(**1**):1-9, 2009, doi:10.2478/v10037-009-0001-2.CrossrefGoogle Scholar

[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(**1**):223-230, 1990.Google Scholar

[16] Walter Rudin. *Principles of Mathematical Analysis.* MacGraw-Hill, 1976.Google Scholar

[17] Laurent Schwartz. *Cours d'analyse.* Hermann, 1981.Web of ScienceGoogle Scholar

[18] Yasunari Shidama. Banach space of bounded linear operators. *Formalized Mathematics*, 12(**1**):39-48, 2004.Google Scholar

[19] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(**2**):291-296, 1990.Google Scholar

[20] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

[21] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar

## Comments (0)