[1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.Google Scholar

[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529-536, 1990.Google Scholar

[4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar

[5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

[6] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar

[7] Agata Darmochwał. The Euclidean space. *Formalized Mathematics*, 2(**4**):599-603, 1991.Google Scholar

[8] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. *Formalized Mathematics*, 13(**4**):577-580, 2005.Google Scholar

[9] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces ^{n}. *Formalized Mathematics*, 15(**2**):65-72, 2007, doi:10.2478/v10037-007-0008-5.CrossrefGoogle Scholar

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(**1**):35-40, 1990.Google Scholar

[11] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. *Formalized Mathematics*, 12(**3**):321-327, 2004.Google Scholar

[12] Takao Inoué, Noboru Endou, and Yasunari Shidama. Differentiation of vector-valued functions on *n*-dimensional real normed linear spaces. *Formalized Mathematics*, 18(**4**):207-212, 2010, doi: 10.2478/v10037-010-0025-7.CrossrefGoogle Scholar

[13] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(**2**):269-272, 1990.Google Scholar

[14] Jarosław Kotowicz. Functions and finite sequences of real numbers. *Formalized Mathematics*, 3(**2**):275-278, 1992.Google Scholar

[15] Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. *Formalized Mathematics*, 17(**1**):1-9, 2009, doi:10.2478/v10037-009-0001-2.CrossrefGoogle Scholar

[16] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. *Formalized Mathematics*, 12(**3**):269-275, 2004.Google Scholar

[17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(**1**):223-230, 1990.Google Scholar

[18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Formalized Mathematics*, 1(**4**):777-780, 1990.Google Scholar

[19] Walter Rudin. *Principles of Mathematical Analysis*. MacGraw-Hill, 1976.Google Scholar

[20] Laurent Schwartz. *Cours d'analyse*. Hermann, 1981.Web of ScienceGoogle Scholar

[21] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(**2**):291-296, 1990.Google Scholar

[22] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

[23] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar

[24] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. *Formalized Mathematics*, 9(**3**):471-474, 2001.Google Scholar

## Comments (0)