[1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.Google Scholar

[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529-536, 1990.Google Scholar

[4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar

[5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

[6] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar

[7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Formalized Mathematics*, 8(**1**):93-102, 1999.Google Scholar

[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. *Formalized Mathematics*, 9(**1**):197-200, 2001.Google Scholar

[9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. *Formalized Mathematics*, 9(**2**):281-284, 2001.Google Scholar

[10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. *Formalized Mathematics*, 9(**1**):191-196, 2001.Google Scholar

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(**1**):35-40, 1990.Google Scholar

[12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. *Formalized Mathematics*, 1(**2**):273-275, 1990.Google Scholar

[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(**1**):223-230, 1990.Google Scholar

[14] Jan Popiołek. Real normed space. *Formalized Mathematics*, 2(**1**):111-115, 1991.Google Scholar

[15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Formalized Mathematics*, 1(**4**):777-780, 1990.Google Scholar

[16] Murray R. Spiegel. *Theory and Problems of Vector Analysis*. McGraw-Hill, 1974.Google Scholar

[17] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(**2**):291-296, 1990.Google Scholar

[18] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

[19] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar

[20] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. *Formalized Mathematics*, 3(**2**):171-175, 1992.Google Scholar

## Comments (0)