Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.134
Source Normalized Impact per Paper (SNIP) 2015: 0.686
Impact per Publication (IPP) 2015: 0.296

Open Access
Online
ISSN
1898-9934
See all formats and pricing
In This Section
Volume 19, Issue 1 (Jan 2011)

Issues

The Definition of Topological Manifolds

Marco Riccardi
  • Via del Pero 102, 54038 Montignoso, Italy
Published Online: 2011-07-18 | DOI: https://doi.org/10.2478/v10037-011-0007-4

The Definition of Topological Manifolds

This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

  • [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.

  • [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

  • [8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.

  • [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • [10] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.

  • [11] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.

  • [12] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T. Formalized Mathematics, 12(3):301-306, 2004.

  • [13] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.

  • [14] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.

  • [15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.

  • [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

  • [17] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8. [Crossref]

  • [18] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.

  • [19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

About the article


Published Online: 2011-07-18

Published in Print: 2011-01-01



Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-011-0007-4. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marco Riccardi
Formalized Mathematics, 2012, Volume 20, Number 1

Comments (0)

Please log in or register to comment.
Log in