Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 19, Issue 1 (Jan 2011)

Issues

The Definition of Topological Manifolds

Marco Riccardi
  • Via del Pero 102, 54038 Montignoso, Italy
Published Online: 2011-07-18 | DOI: https://doi.org/10.2478/v10037-011-0007-4

The Definition of Topological Manifolds

This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Google Scholar

  • [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Google Scholar

  • [8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.Google Scholar

  • [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [10] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.Google Scholar

  • [11] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.Google Scholar

  • [12] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T. Formalized Mathematics, 12(3):301-306, 2004.Google Scholar

  • [13] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.Google Scholar

  • [14] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Google Scholar

  • [15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Google Scholar

  • [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Google Scholar

  • [17] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.CrossrefGoogle Scholar

  • [18] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.Google Scholar

  • [19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

About the article


Published Online: 2011-07-18

Published in Print: 2011-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-011-0007-4.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in