## The Definition of Topological Manifolds

This article introduces the definition of *n*-locally Euclidean topological spaces and topological manifolds [13].

Show Summary Details# The Definition of Topological Manifolds

#### Open Access

## The Definition of Topological Manifolds

## About the article

## Citing Articles

*Formalized Mathematics*, 2012, Volume 20, Number 1

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Marco Riccardi

This article introduces the definition of *n*-locally Euclidean topological spaces and topological manifolds [13].

[1] Grzegorz Bancerek. Cardinal numbers.

*Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar[2] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(**1**):91-96, 1990.Google Scholar[3] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar[4] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar[5] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar[6] Agata Darmochwał. Compact spaces.

*Formalized Mathematics*, 1(**2**):383-386, 1990.Google Scholar[7] Agata Darmochwał. The Euclidean space.

*Formalized Mathematics*, 2(**4**):599-603, 1991.Google Scholar[8] Adam Grabowski. Properties of the product of compact topological spaces.

*Formalized Mathematics*, 8(**1**):55-59, 1999.Google Scholar[9] Krzysztof Hryniewiecki. Basic properties of real numbers.

*Formalized Mathematics*, 1(**1**):35-40, 1990.Google Scholar[10] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces.

*Formalized Mathematics*, 2(**5**):665-674, 1991.Google Scholar[11] Zbigniew Karno. The lattice of domains of an extremally disconnected space.

*Formalized Mathematics*, 3(**2**):143-149, 1992.Google Scholar[12] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in ε

^{n}/T.*Formalized Mathematics*, 12(**3**):301-306, 2004.Google Scholar[13] John M. Lee.

*Introduction to Topological Manifolds*. Springer-Verlag, New York Berlin Heidelberg, 2000.Google Scholar[14] Robert Milewski. Bases of continuous lattices.

*Formalized Mathematics*, 7(**2**):285-294, 1998.Google Scholar[15] Beata Padlewska. Locally connected spaces.

*Formalized Mathematics*, 2(**1**):93-96, 1991.Google Scholar[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

*Formalized Mathematics*, 1(**1**):223-230, 1990.Google Scholar[17] Karol Pąk. Basic properties of metrizable topological spaces.

*Formalized Mathematics*, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.CrossrefGoogle Scholar[18] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces.

*Formalized Mathematics*, 7(**1**):81-86, 1998.Google Scholar[19] Wojciech A. Trybulec. Vectors in real linear space.

*Formalized Mathematics*, 1(**2**):291-296, 1990.Google Scholar[20] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

**Published Online**: 2011-07-18

**Published in Print**: 2011-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-011-0007-4.

This content is open access.

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Marco Riccardi

## Comments (0)