Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 19, Issue 1 (Jan 2011)

Issues

Cartesian Products of Family of Real Linear Spaces

Hiroyuki Okazaki / Noboru Endou / Yasunari Shidama
Published Online: 2011-07-18 | DOI: https://doi.org/10.2478/v10037-011-0009-2

Cartesian Products of Family of Real Linear Spaces

In this article we introduced the isomorphism mapping between cartesian products of family of linear spaces [4]. Those products had been formalized by two different ways, i.e., the way using the functor [:X, Y:] and ones using the functor "product". By the same way, the isomorphism mapping was defined between Cartesian products of family of linear normed spaces also.

  • [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [4] Nicolas Bourbaki. Topological vector spaces: Chapters 1-5. Springer, 1981.Google Scholar

  • [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Google Scholar

  • [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Google Scholar

  • [11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Google Scholar

  • [12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. Formalized Mathematics, 15(3):81-85, 2007, doi:10.2478/v10037-007-0010-y.CrossrefGoogle Scholar

  • [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Google Scholar

  • [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Google Scholar

  • [15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.Google Scholar

  • [16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.Google Scholar

  • [18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

About the article


Published Online: 2011-07-18

Published in Print: 2011-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-011-0009-2.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in