Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91-96, 1990.Google Scholar

Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. *Formalized Mathematics*, 2(**1**):163-171, 1991.Google Scholar

Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_{4} topological spaces. *Formalized Mathematics*, 5(**3**):361-366, 1996.Google Scholar

Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar

Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar

Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar

Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. *Formalized Mathematics*, 1(**2**):257-261, 1990.Google Scholar

Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. *Formalized Mathematics*, 2(**4**):605-608, 1991.Google Scholar

Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. *Formalized Mathematics*, 12(**3**):321-327, 2004.Google Scholar

Artur Korniłowicz. Collective operations on number-membered sets. *Formalized Mathematics*, 17(**2**):99-115, 2009, doi: 10.2478/v10037-009-0011-0.CrossrefGoogle Scholar

Jarosław Kotowicz. Convergent sequences and the limit of sequences. *Formalized Mathematics*, 1(**2**):273-275, 1990.Google Scholar

Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(**2**):269-272, 1990.Google Scholar

Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(**5**):887-890, 1990.Google Scholar

Stanisław Mazur and Stanisław Ulam. Sur les transformationes isométriques d'espaces vectoriels normés. *C. R. Acad. Sci. Paris*, (194):946-948, 1932.Google Scholar

Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(**1**):223-230, 1990.Google Scholar

Jan Popiołek. Real normed space. *Formalized Mathematics*, 2(**1**):111-115, 1991.Google Scholar

Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(**2**):329-334, 1990.Google Scholar

Andrzej Trybulec. A Borsuk theorem on homotopy types. *Formalized Mathematics*, 2(**4**):535-545, 1991.Google Scholar

Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(**4**):341-347, 2003.Google Scholar

Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(**2**):291-296, 1990.Google Scholar

Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

Jussi Väisälä. A proof of the Mazur-Ulam theorem. http://www.helsinki.fi/~jvaisala/mazurulam.pdf

Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(**1**):73-83, 1990.Google Scholar

Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

## Comments (0)