Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.134
Source Normalized Impact per Paper (SNIP) 2015: 0.686
Impact per Publication (IPP) 2015: 0.296

Open Access
Online
ISSN
1898-9934
See all formats and pricing
In This Section
Volume 19, Issue 3 (Jan 2011)

Issues

Continuity of Barycentric Coordinates in Euclidean Topological Spaces

Karol Pąk
  • Institute of Informatics, University of Białystok, Poland
Published Online: 2012-04-26 | DOI: https://doi.org/10.2478/v10037-011-0022-5

Continuity of Barycentric Coordinates in Euclidean Topological Spaces

In this paper we present selected properties of barycentric coordinates in the Euclidean topological space. We prove the topological correspondence between a subset of an affine closed space of εn and the set of vectors created from barycentric coordinates of points of this subset.

  • Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

  • Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

  • Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.

  • Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

  • Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.

  • Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

  • Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.

  • Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. Formalized Mathematics, 6(3):411-415, 1997.

  • Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

  • Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

  • Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.

  • Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.

  • Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.

  • Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • Artur Korniłowicz. The correspondence between n-dimensional Euclidean space and the product of n real lines. Formalized Mathematics, 18(1):81-85, 2010, doi: 10.2478/v10037-010-0011-0. [Crossref]

  • Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

  • Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235-240, 1992.

  • Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.

  • Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

  • Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z. [Crossref]

  • Karol Pąk. Linear transformations of Euclidean topological spaces. Formalized Mathematics, 19(2):103-108, 2011, doi: 10.2478/v10037-011-0016-3. [Crossref]

  • Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

  • Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.

  • Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.

  • Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

  • Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

  • Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

  • Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

About the article


Published Online: 2012-04-26

Published in Print: 2011-01-01



Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-011-0022-5. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Karol Pąk
Formalized Mathematics, 2011, Volume 19, Number 3

Comments (0)

Please log in or register to comment.
Log in