Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(**2**):377-382, 1990.Google Scholar

Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar

Grzegorz Bancerek. König's theorem. *Formalized Mathematics*, 1(**3**):589-593, 1990.Google Scholar

Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91-96, 1990.Google Scholar

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.Google Scholar

Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529-536, 1990.Google Scholar

Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar

Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(**3**):521-527, 1990.Google Scholar

Marco B. Caminati. Preliminaries to classical first order model theory. *Formalized Mathematics*, 19(**3**):155-167, 2011, doi: 10.2478/v10037-011-0025-2.CrossrefGoogle Scholar

Marco B. Caminati. First order languages: Further syntax and semantics. *Formalized Mathematics*, 19(**3**):179-192, 2011, doi: 10.2478/v10037-011-0027-0.CrossrefGoogle Scholar

Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165-167, 1990.Google Scholar

Katarzyna Jankowska. Transpose matrices and groups of permutations. *Formalized Mathematics*, 2(**5**):711-717, 1991.Google Scholar

Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. *Formalized Mathematics*, 1(**5**):829-832, 1990.Google Scholar

Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(**1**):147-152, 1990.Google Scholar

W. Pohlers and T. Glaß. An introduction to mathematical logic. *Vorlesungsskriptum, WS*, 93, 1992.Google Scholar

Marta Pruszyńska and Marek Dudzicz. On the isomorphism between finite chains. *Formalized Mathematics*, 9(**2**):429-430, 2001.Google Scholar

Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(**1**):115-122, 1990.Google Scholar

Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(**3**):501-505, 1990.Google Scholar

Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(**1**):73-83, 1990.Google Scholar

Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar

## Comments (0)