Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(**2**):377-382, 1990.Google Scholar

Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar

Grzegorz Bancerek. König's theorem. *Formalized Mathematics*, 1(**3**):589-593, 1990.Google Scholar

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.Google Scholar

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. *Formalized Mathematics*, 5(**4**):485-492, 1996.Google Scholar

Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529-536, 1990.Google Scholar

Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar

Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar

Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar

Marco B. Caminati. Preliminaries to classical first order model theory. *Formalized Mathematics*, 19(**3**):155-167, 2011, doi: 10.2478/v10037-011-0025-2.CrossrefGoogle Scholar

Marco B. Caminati. Definition of first order language with arbitrary alphabet. Syntax of terms, atomic formulas and their subterms. *Formalized Mathematics*, 19(**3**):169-178, 2011, doi: 10.2478/v10037-011-0026-1.CrossrefGoogle Scholar

Marco B. Caminati. First order languages: Further syntax and semantics. *Formalized Mathematics*, 19(**3**):179-192, 2011, doi: 10.2478/v10037-011-0027-0.CrossrefGoogle Scholar

Marco B. Caminati. Free interpretation, quotient interpretation and substitution of a letter with a term for first order languages. *Formalized Mathematics*, 19(**3**):193-203, 2011, doi: 10.2478/v10037-011-0028-z.CrossrefGoogle Scholar

M. B. Caminati. Yet another proof of Goedel's completeness theorem for first-order classical logic. *Arxiv preprint arXiv:0910.2059*, 2009.Google Scholar

Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part I. *Formalized Mathematics*, 2(**5**):683-687, 1991.Google Scholar

Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165-167, 1990.Google Scholar

H. D. Ebbinghaus, J. Flum, and W. Thomas. *Mathematical logic.* Springer, 1994.Google Scholar

Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. *Formalized Mathematics*, 1(**5**):829-832, 1990.Google Scholar

Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(**1**):147-152, 1990.Google Scholar

Marta Pruszyńska and Marek Dudzicz. On the isomorphism between finite chains. *Formalized Mathematics*, 9(**2**):429-430, 2001.Google Scholar

Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Formalized Mathematics*, 1(**3**):441-444, 1990.Google Scholar

Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(**1**):115-122, 1990.Google Scholar

Andrzej Trybulec. Tuples, projections and Cartesian products. *Formalized Mathematics*, 1(**1**):97-105, 1990.Google Scholar

Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(**1**):73-83, 1990.Google Scholar

Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar

Edmund Woronowicz and Anna Zalewska. Properties of binary relations. *Formalized Mathematics*, 1(**1**):85-89, 1990.Google Scholar

## Comments (0)