Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(**2**):377-382, 1990.

Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.

Grzegorz Bancerek. König's theorem. *Formalized Mathematics*, 1(**3**):589-593, 1990.

Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91-96, 1990.

Grzegorz Bancerek. Monoids. *Formalized Mathematics*, 3(**2**):213-225, 1992.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.

Czesław Byliński. Binary operations. *Formalized Mathematics*, 1(**1**):175-180, 1990.

Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529-536, 1990.

Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.

Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.

Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.

Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47-53, 1990.

Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(**4**):661-668, 1990.

Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. *Formalized Mathematics*, 1(**2**):257-261, 1990.

Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165-167, 1990.

Agata Darmochwał. The Euclidean space. *Formalized Mathematics*, 2(**4**):599-603, 1991.

Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. *Formalized Mathematics*, 2(**4**):605-608, 1991.

Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(**1**):35-40, 1990.

Katarzyna Jankowska. Matrices. Abelian group of matrices. *Formalized Mathematics*, 2(**4**):475-480, 1991.

Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. *Formalized Mathematics*, 1(**3**):607-610, 1990.

Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T *Formalized Mathematics*, 12(**3**):301-306, 2004.

Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. *Formalized Mathematics*, 13(**1**):117-124, 2005.

Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(**2**):269-272, 1990.

Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(**2**):335-342, 1990.

John M. Lee. *Introduction to Topological Manifolds.* Springer-Verlag, New York Berlin Heidelberg, 2000.

Robert Milewski. Bases of continuous lattices. *Formalized Mathematics*, 7(**2**):285-294, 1998.

Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. *Formalized Mathematics*, 17(**1**):1-9, 2009, doi:10.2478/v10037-009-0001-2. [Crossref]

Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. *Formalized Mathematics*, 1(**3**):555-561, 1990.

Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(**1**):147-152, 1990.

Beata Padlewska. Locally connected spaces. *Formalized Mathematics*, 2(**1**):93-96, 1991.

Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(**1**):223-230, 1990.

Karol Pąk. Basic properties of metrizable topological spaces. *Formalized Mathematics*, 17(**3**):201-205, 2009, doi: 10.2478/v10037-009-0024-8. [Crossref]

Marco Riccardi. The definition of topological manifolds. *Formalized Mathematics*, 19(**1**):41-44, 2011, doi: 10.2478/v10037-011-0007-4. [Crossref]

Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(**2**):329-334, 1990.

Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(**4**):341-347, 2003.

Wojciech A. Trybulec. Basis of real linear space. *Formalized Mathematics*, 1(**5**):847-850, 1990.

Wojciech A. Trybulec. Linear combinations in real linear space. *Formalized Mathematics*, 1(**3**):581-588, 1990.

Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. *Formalized Mathematics*, 1(**2**):297-301, 1990.

Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(**2**):291-296, 1990.

Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(**1**):73-83, 1990.

Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181-186, 1990.

Mariusz Żynel and Adam Guzowski. *T*_{0} topological spaces. *Formalized Mathematics*, 5(**1**):75-77, 1996.

Published Online: 2012-09-12Published in Print: 2012-01-01Citation Information:Formalized Mathematics. Volume 20, Issue 1, Pages 41–45, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-012-0006-0, September 2012This content is open access.