## Summary

The goal of this article is to formalize Ceva’s theorem that is in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and generalized form of Ceva’s theorem itself are provided.

Show Summary Details# Routh’s, Menelaus’ and Generalized Ceva’s Theorems

#### Open Access

## Summary

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Boris A. Shminke

The goal of this article is to formalize Ceva’s theorem that is in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and generalized form of Ceva’s theorem itself are provided.

[1] Agata Darmochwał. The Euclidean space.

*Formalized Mathematics*, 2(**4**):599-603, 1991.Google Scholar[2] Krzysztof Hryniewiecki. Basic properties of real numbers.

*Formalized Mathematics*, 1(**1**):35-40, 1990.Google Scholar[3] Akihiro Kubo. Lines in

*n*-dimensional Euclidean spaces.*Formalized Mathematics*, 11(**4**):371-376, 2003.Google Scholar[4] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space.

*Formalized Mathematics*, 11(**3**):281-287, 2003.Google Scholar[5] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

*Formalized Mathematics*, 1(**1**):223-230, 1990.Google Scholar[6] Marco Riccardi. Heron’s formula and Ptolemy’s theorem.

*Formalized Mathematics*, 16(**2**):97-101, 2008, doi:10.2478/v10037-008-0014-2.CrossrefGoogle Scholar[7] Wojciech A. Trybulec. Vectors in real linear space.

*Formalized Mathematics*, 1(**2**):291-296, 1990.Google Scholar[8] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/.Google Scholar

[9] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio.

*Formalized Mathematics*, 7(**2**):255-263, 1998.Google Scholar

**Published Online**: 2013-02-02

**Published in Print**: 2012-12-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-012-0018-9.

This content is open access.

## Comments (0)