Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 20, Issue 2

Issues

Introduction to Rational Functions

Christoph Schwarzweller
Published Online: 2013-02-02 | DOI: https://doi.org/10.2478/v10037-012-0021-1

Summary

In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [8] H. Heuser. Lehrbuch der Analysis. B.G. Teubner Stuttgart, 1990.Google Scholar

  • [9] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.Google Scholar

  • [10] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.Google Scholar

  • [11] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.Google Scholar

  • [12] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.Google Scholar

  • [13] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.Google Scholar

  • [14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.Google Scholar

  • [15] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Google Scholar

  • [16] Christoph Schwarzweller and Agnieszka Rowinska-Schwarzweller. Schur’s theorem on the stability of networks. Formalized Mathematics, 14(4):135-142, 2006, doi:10.2478/v10037-006-0017-9.CrossrefGoogle Scholar

  • [17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Google Scholar

  • [19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [20] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. FormalizedMathematics, 2(1):41-47, 1991.Google Scholar

  • [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [23] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.Google Scholar

About the article

Published Online: 2013-02-02

Published in Print: 2012-12-01


Citation Information: Formalized Mathematics, Volume 20, Issue 2, Pages 181–191, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-012-0021-1.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in