[1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(**2**):377-382, 1990.Google Scholar

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar

[3] Grzegorz Bancerek. Introduction to trees. *Formalized Mathematics*, 1(**2**):421-427, 1990.Google Scholar

[4] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91-96, 1990.Google Scholar

[5] Grzegorz Bancerek. K¨onig’s lemma. *Formalized Mathematics*, 2(**3**):397-402, 1991.Google Scholar

[6] Grzegorz Bancerek. Joining of decorated trees. *Formalized Mathematics*, 4(**1**):77-82, 1993.Google Scholar

[7] Grzegorz Bancerek. Subtrees. *Formalized Mathematics*, 5(**2**):185-190, 1996.Google Scholar

[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.Google Scholar

[9] Czesław Bylinski. Binary operations. *Formalized Mathematics*, 1(**1**):175-180, 1990.Google Scholar

[10] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. *FormalizedMathematics*, 1(**3**):529-536, 1990.Google Scholar

[11] Czesław Bylinski. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar

[12] Czesław Bylinski. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

[13] Czesław Bylinski. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar

[14] Czesław Bylinski. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar

[15] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165-167, 1990.Google Scholar

[16] Mariusz Giero. The axiomatization of propositional linear time temporal logic. *Formalized**Mathematics*, 19(**2**):113-119, 2011, doi: 10.2478/v10037-011-0018-1.CrossrefGoogle Scholar

[17] Mariusz Giero. The derivations of temporal logic formulas. *Formalized Mathematics*, 20(**3**):215-219, 2012, doi: 10.2478/v10037-012-0025-x.CrossrefGoogle Scholar

[18] Mariusz Giero. The properties of sets of temporal logic subformulas. *Formalized Mathematics*, 20(**3**):221-226, 2012, doi: 10.2478/v10037-012-0026-9.CrossrefGoogle Scholar

[19] Adam Grabowski. Hilbert positive propositional calculus. *Formalized Mathematics*, 8(**1**):69-72, 1999.Google Scholar

[20] Fred Kr¨oger and Stephan Merz. *Temporal Logic and State Systems*. Springer-Verlag, 2008.Google Scholar

[21] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(**1**):147-152, 1990.Google Scholar

[22] Karol Pak. Continuity of barycentric coordinates in Euclidean topological spaces. *Formalized**Mathematics*, 19(**3**):139-144, 2011, doi: 10.2478/v10037-011-0022-5.CrossrefGoogle Scholar

[23] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(**2**):329-334, 1990.Google Scholar

[24] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(**1**):115-122, 1990.Google Scholar

[25] Andrzej Trybulec. Enumerated sets. *Formalized Mathematics*, 1(**1**):25-34, 1990.Google Scholar

[26] Andrzej Trybulec. Tuples, projections and Cartesian products. *Formalized Mathematics*, 1(**1**):97-105, 1990.Google Scholar

[27] Andrzej Trybulec. Defining by structural induction in the positive propositional language. *Formalized Mathematics*, 8(**1**):133-137, 1999.Google Scholar

[28] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

[29] Edmund Woronowicz. Many argument relations. *Formalized Mathematics*, 1(**4**):733-737, 1990.Google Scholar

[30] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(**1**):73-83, 1990.Google Scholar

[31] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar

## Comments (0)