Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 20, Issue 4 (Dec 2012)

Issues

Posterior Probability on Finite Set

Hiroyuki Okazaki
Published Online: 2013-02-02 | DOI: https://doi.org/10.2478/v10037-012-0030-0

Summary

In [14] we formalized probability and probability distribution on a finite sample space. In this article first we propose a formalization of the class of finite sample spaces whose element’s probability distributions are equivalent with each other. Next, we formalize the probability measure of the class of sample spaces we have formalized above. Finally, we formalize the sampling and posterior probability.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [4] Czesław Bylinski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.Google Scholar

  • [5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [11] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.Google Scholar

  • [12] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.Google Scholar

  • [13] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.Google Scholar

  • [14] Hiroyuki Okazaki. Probability on finite and discrete set and uniform distribution. Formalized Mathematics, 17(2):173-178, 2009, doi: 10.2478/v10037-009-0020-z.CrossrefGoogle Scholar

  • [15] Hiroyuki Okazaki and Yasunari Shidama. Probability on finite set and real-valued random variables. Formalized Mathematics, 17(2):129-136, 2009, doi: 10.2478/v10037-009-0014-x.CrossrefGoogle Scholar

  • [16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [18] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Google Scholar

  • [19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.Google Scholar

  • [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [22] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.Google Scholar

  • [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [25] Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of probability, and addition of matrices of real elements. Formalized Mathematics, 14(3):101-108, 2006, doi:10.2478/v10037-006-0012-1.CrossrefGoogle Scholar

About the article

This work is supported by JSPS KAKENHI 21240001


Published Online: 2013-02-02

Published in Print: 2012-12-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-012-0030-0.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in