Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 20, Issue 4 (Dec 2012)

Issues

Basic Properties of Primitive Root and Order Function

Na Ma / Xiquan Liang
Published Online: 2013-02-02 | DOI: https://doi.org/10.2478/v10037-012-0031-z

Summary

In this paper we defined the reduced residue system and proved its fundamental properties. Then we proved the basic properties of the order function. Finally, we defined the primitive root and proved its fundamental properties. Our work is based on [12], [8], and [11].

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [8] Zhang Dexin. Integer Theory. Science Publication, China, 1965.Google Scholar

  • [9] Yoshinori Fujisawa and Yasushi Fuwa. The Euler’s function. Formalized Mathematics, 6(4):549-551, 1997.Google Scholar

  • [10] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.Google Scholar

  • [11] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Posts and Telecom Press, China, 2007.Google Scholar

  • [12] Hua Loo Keng. Introduction to Number Theory. Beijing Science Publication, China, 1957.Google Scholar

  • [13] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.Google Scholar

  • [14] Artur Korniłowicz. Collective operations on number-membered sets. Formalized Mathematics, 17(2):99-115, 2009, doi: 10.2478/v10037-009-0011-0.CrossrefGoogle Scholar

  • [15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [16] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.Google Scholar

  • [17] Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics, 15(4):181-187, 2007, doi:10.2478/v10037-007-0022-7.CrossrefGoogle Scholar

  • [18] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.Google Scholar

  • [19] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Google Scholar

  • [20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. Google Scholar

About the article

Authors thank Andrzej Trybulec and Yatsuka Nakamura for the help during writing this article


Published Online: 2013-02-02

Published in Print: 2012-12-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-012-0031-z.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in