Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 20, Issue 4 (Dec 2012)

Issues

Banach’s Continuous Inverse Theorem and Closed Graph Theorem

Hideki Sakurai / Hiroyuki Okazaki / Yasunari Shidama
Published Online: 2013-02-02 | DOI: https://doi.org/10.2478/v10037-012-0032-y

Summary

In this article we formalize one of the most important theorems of linear operator theory - the Closed Graph Theorem commonly used in a standard text book such as [10] in Chapter 24.3. It states that a surjective closed linear operator between Banach spaces is bounded.

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Czesław Bylinski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.Google Scholar

  • [3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [5] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [7] Czesław Bylinski. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.Google Scholar

  • [8] Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama. Real linear space of real sequences. Formalized Mathematics, 11(3):249-253, 2003.Google Scholar

  • [9] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.Google Scholar

  • [10] Isao Miyadera. Functional Analysis. Riko-Gaku-Sya, 1972.Google Scholar

  • [11] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.Google Scholar

  • [12] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51-59, 2011, doi: 10.2478/v10037-011-0009-2.CrossrefGoogle Scholar

  • [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Google Scholar

  • [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Google Scholar

  • [15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.Google Scholar

  • [16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. FormalizedMathematics, 1(2):297-301, 1990.Google Scholar

  • [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

About the article

This work was supported by JSPS KAKENHI 22300285


Published Online: 2013-02-02

Published in Print: 2012-12-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-012-0032-y.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in