## Summary

In this article, we described the contracting mapping on normed linear space. Furthermore, we applied that mapping to ordinary differential equations on real normed space. Our method is based on the one presented by Schwarz [29].

Show Summary Details# Contracting Mapping on Normed Linear Space

#### Open Access

## Summary

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Keiichi Miyajima / Artur Korniłowicz / Yasunari Shidama

In this article, we described the contracting mapping on normed linear space. Furthermore, we applied that mapping to ordinary differential equations on real normed space. Our method is based on the one presented by Schwarz [29].

[1] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(**1**):91-96, 1990.Google Scholar[2] Józef Białas. Properties of the intervals of real numbers.

*Formalized Mathematics*, 3(**2**):263-269, 1992.Google Scholar[3] Czesław Bylinski. The complex numbers.

*Formalized Mathematics*, 1(**3**):507-513, 1990.Google Scholar[4] Czesław Bylinski. Functions and their basic properties.

*Formalized Mathematics*, 1(**1**):55-65, 1990.Google Scholar[5] Czesław Bylinski. Functions from a set to a set.

*Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar[6] Czesław Bylinski. Partial functions.

*Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar[7] Czesław Bylinski. Some basic properties of sets.

*Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar[8] Agata Darmochwał. The Euclidean space.

*Formalized Mathematics*, 2(**4**):599-603, 1991.Google Scholar[9] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space.

*Formalized**Mathematics*, 13(**4**):577-580, 2005.Google Scholar[10] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces

*Rn*.*Formalized Mathematics*, 15(**2**):65-72, 2007, doi:10.2478/v10037-007-0008-5.CrossrefGoogle Scholar[11] Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama. Real linear space of real sequences.

*Formalized Mathematics*, 11(**3**):249-253, 2003.Google Scholar[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions.

*Formalized**Mathematics*, 9(**2**):281-284, 2001.Google Scholar[13] Andrzej Kondracki. Basic properties of rational numbers.

*Formalized Mathematics*, 1(**5**):841-845, 1990.Google Scholar[14] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets.

*Formalized Mathematics*, 17(**1**):43-60, 2009, doi:10.2478/v10037-009-0005-y.CrossrefGoogle Scholar[15] Rafał Kwiatek. Factorial and Newton coefficients.

*Formalized Mathematics*, 1(**5**):887-890, 1990.Google Scholar[16] Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from R into real normed space.

*Formalized Mathematics*, 19(**1**):17-22, 2011, doi: 10.2478/v10037-011-0003-8.CrossrefGoogle Scholar[17] Keiichi Miyajima, Artur Korniłowicz, and Yasunari Shidama. Riemann integral of functions from R into

*n*-dimensional real normed space.*Formalized Mathematics*, 20(**1**):79-86, 2012, doi: 10.2478/v10037-012-0011-3.CrossrefGoogle Scholar[18] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into

*Rn*.*Formalized Mathematics*, 17(**2**):179-185, 2009, doi: 10.2478/v10037-009-0021-y.CrossrefGoogle Scholar[19] Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real functions.

*Formalized Mathematics*, 19(**4**):233-239, 2011, doi: 10.2478/v10037-011-0032-3.CrossrefGoogle Scholar[20] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences.

*Formalized Mathematics*, 6(**2**):265-268, 1997.Google Scholar[21] Takaya Nishiyama, Artur Korniłowicz, and Yasunari Shidama. The uniform continuity of functions on normed linear spaces.

*Formalized Mathematics*, 12(**3**):277-279, 2004.Google Scholar[22] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces.

*Formalized Mathematics*, 12(**3**):269-275, 2004.Google Scholar[23] Hiroyuki Okazaki, Noboru Endou, Keiko Narita, and Yasunari Shidama. Differentiable functions into real normed spaces.

*Formalized Mathematics*, 19(**2**):69-72, 2011, doi: 10.2478/v10037-011-0012-7.CrossrefGoogle Scholar[24] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces.

*Formalized Mathematics*, 19(**1**):45-49, 2011, doi: 10.2478/v10037-011-0008-3.CrossrefGoogle Scholar[25] Jan Popiołek. Real normed space.

*Formalized Mathematics*, 2(**1**):111-115, 1991.Google Scholar[26] Konrad Raczkowski and Paweł Sadowski. Real function differentiability.

*Formalized**Mathematics*, 1(**4**):797-801, 1990.Google Scholar[27] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.

*Formalized Mathematics*, 1(**4**):777-780, 1990.Google Scholar[28] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem.

*Formalized Mathematics*, 6(**3**):335-338, 1997.Google Scholar[29] Laurent Schwartz.

*Cours d’analyse II, Ch. 5*. HERMANN, Paris, 1967.Web of ScienceGoogle Scholar[30] Yasunari Shidama. Banach space of bounded linear operators.

*Formalized Mathematics*, 12(**1**):39-48, 2004.Google Scholar[31] Yasumasa Suzuki. Banach space of bounded real sequences.

*Formalized Mathematics*, 12(**2**):77-83, 2004.Google Scholar[32] Andrzej Trybulec. Binary operations applied to functions.

*Formalized Mathematics*, 1(**2**):329-334, 1990.Google Scholar[33] Andrzej Trybulec. On the sets inhabited by numbers.

*Formalized Mathematics*, 11(**4**):341-347, 2003.Google Scholar[34] Michał J. Trybulec. Integers.

*Formalized Mathematics*, 1(**3**):501-505, 1990.Google Scholar[35] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space.

*Formalized**Mathematics*, 1(**2**):297-301, 1990.Google Scholar[36] Wojciech A. Trybulec. Vectors in real linear space.

*Formalized Mathematics*, 1(**2**):291-296, 1990.Google Scholar[37] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar[38] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(**1**):73-83, 1990.Google Scholar[39] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(**1**):181-186, 1990.Google Scholar

**Published Online**: 2013-02-02

**Published in Print**: 2012-12-01

**Citation Information: **Formalized Mathematics, Volume 20, Issue 4, Pages 291–301, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-012-0035-8.

This content is open access.

## Comments (0)