Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 21, Issue 2 (Jun 2013)

Issues

Differentiation in Normed Spaces

*

Noboru Endou / Yasunari Shidama

Summary

In this article we formalized the Fréchet differentiation. It is defined as a generalization of the differentiation of a real-valued function of a single real variable to more general functions whose domain and range are subsets of normed spaces [14].

Keywords : formalization of Fréchet derivative; Fréchet differentiability

  • [1] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Google Scholar

  • [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [11] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.Google Scholar

  • [12] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.Google Scholar

  • [13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Google Scholar

  • [14] Laurent Schwartz. Cours d’analyse. Hermann, 1981.Web of ScienceGoogle Scholar

  • [15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.Google Scholar

  • [16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [21] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992. Google Scholar

About the article

Published in Print: 2013-06-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/forma-2013-0011.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in