[1] Kenichi Arai and Hiroyuki Okazaki. Properties of primes and multiplicative group of a field. *Formalized Mathematics*, 17(**2**):151-155, 2009. doi:10.2478/v10037-009-0017-7.CrossrefGoogle Scholar

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41-46, 1990.Google Scholar

[3] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91-96, 1990.Google Scholar

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107-114, 1990.Google Scholar

[5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529-536, 1990.Google Scholar

[6] Czesław Bylinski. Functions and their basic properties. *Formalized Mathematics*, 1(**1**): 55-65, 1990.Google Scholar

[7] Czesław Bylinski. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153-164, 1990.Google Scholar

[8] Czesław Bylinski. Partial functions. *Formalized Mathematics*, 1(**2**):357-367, 1990.Google Scholar

[9] Czesław Bylinski. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(**4**):661-668, 1990.Google Scholar

[10] Czesław Bylinski. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47-53, 1990.Google Scholar

[11] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165-167, 1990.Google Scholar

[12] Yuzhong Ding and Xiquan Liang. Solving roots of polynomial equation of degree 2 and 3 with complex coefficients. *Formalized Mathematics*, 12(**2**):85-92, 2004.Google Scholar

[13] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. *Formalized Mathematics*, 7(**2**):317-321, 1998.Google Scholar

[14] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Operations of points on elliptic curve in projective coordinates. *Formalized Mathematics*, 20(**1**):87-95, 2012. doi:10.2478/v10037-012-0012-2.CrossrefGoogle Scholar

[15] Carl Friedrich Gauss. *Disquisitiones Arithmeticae*. Springer, New York, 1986. English translation.Google Scholar

[16] Richard K. Guy. Every number is expressible as a sum of how many polygonal numbers? *American Mathematical Monthly*, 101:169-172, 1994.Google Scholar

[17] Thomas L. Heath. *A History of Greek Mathematics: From Thales to Euclid, Vol. I*. Courier Dover Publications, 1921.Google Scholar

[18] Andrzej Kondracki. Basic properties of rational numbers. *Formalized Mathematics*, 1(**5**): 841-845, 1990.Google Scholar

[19] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(**2**):269-272, 1990.Google Scholar

[20] Jarosław Kotowicz. Convergent sequences and the limit of sequences. *Formalized Mathematics*, 1(**2**):273-275, 1990.Google Scholar

[21] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(**5**):887-890, 1990.Google Scholar

[22] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. *Formalized Mathematics*, 1(**5**):829-832, 1990.Google Scholar

[23] Robert Milewski. Natural numbers. *Formalized Mathematics*, 7(**1**):19-22, 1998.Google Scholar

[24] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. *Formalized Mathematics*, 6(**2**):265-268, 1997.Google Scholar

[25] Konrad Raczkowski and Andrzej Nedzusiak. Series. *Formalized Mathematics*, 2(**4**):449-452, 1991.Google Scholar

[26] Marco Riccardi. The perfect number theorem and Wilson’s theorem. *Formalized Mathematics*, 17(**2**):123-128, 2009. doi:10.2478/v10037-009-0013-y.CrossrefGoogle Scholar

[27] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. *Formalized Mathematics*, 6(**3**):335-338, 1997.Google Scholar

[28] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(**4**): 341-347, 2003.Google Scholar

[29] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. *Formalized Mathematics*, 1(**3**):445-449, 1990.Google Scholar

[30] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(**3**):501-505, 1990.Google Scholar

[31] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67-71, 1990.Google Scholar

[32] André Weil. *Number Theory. An Approach through History from Hammurapi to Legendre*. Birkh¨auser, Boston, Mass., 1983.Google Scholar

[33] Freek Wiedijk. Formalizing 100 theorems.Google Scholar

[34] Freek Wiedijk. Pythagorean triples. *Formalized Mathematics*, 9(**4**):809-812, 2001.Google Scholar

[35] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1 (**1**):73-83, 1990. Google Scholar

## Comments (0)