Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 21, Issue 3 (Oct 2013)

Issues

The Linearity of Riemann Integral on Functions from ℝ into Real Banach Space

Keiko Narita / Noboru Endou / Yasunari Shidama

Summary

In this article, we described basic properties of Riemann integral on functions from R into Real Banach Space. We proved mainly the linearity of integral operator about the integral of continuous functions on closed interval of the set of real numbers. These theorems were based on the article [10] and we referred to the former articles about Riemann integral. We applied definitions and theorems introduced in the article [9] and the article [11] to the proof. Using the definition of the article [10], we also proved some theorems on bounded functions.

Keywords: formalization of Riemann integral

  • [1] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263-269, 1992.Google Scholar

  • [2] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [5] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.Google Scholar

  • [8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.Google Scholar

  • [9] Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from R into real normed space. Formalized Mathematics, 19(1):17-22, 2011. doi:10.2478/v10037-011-0003-8.CrossrefGoogle Scholar

  • [10] Keiichi Miyajima, Artur Korniłowicz, and Yasunari Shidama. Riemann integral of functions from R into n-dimensional real normed space. Formalized Mathematics, 20(1):79-86, 2012. doi:10.2478/v10037-012-0011-3.CrossrefGoogle Scholar

  • [11] Keiko Narita, Noboru Endou, and Yasunari Shidama. Riemann integral of functions from R into real Banach space. Formalized Mathematics, 21(2):145-152, 2013. doi:10.2478/forma-2013-0016.CrossrefGoogle Scholar

  • [12] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.Google Scholar

  • [13] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011. doi:10.2478/v10037-011-0008-3.CrossrefGoogle Scholar

  • [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Google Scholar

  • [15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Google Scholar

  • [16] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.Google Scholar

  • [17] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.Google Scholar

  • [18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [22] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992. Google Scholar

About the article

Published in Print: 2013-10-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/forma-2013-0020.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in