Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 21, Issue 3 (Oct 2013)

Issues

Isomorphisms of Direct Products of Cyclic Groups of Prime Power Order

Hiroshi Yamazaki / Hiroyuki Okazaki / Kazuhisa Nakasho / Yasunari Shidama

Summary

In this paper we formalized some theorems concerning the cyclic groups of prime power order. We formalize that every commutative cyclic group of prime power order is isomorphic to a direct product of family of cyclic groups [1], [18].

Keywords: formalization of the commutative cyclic group; prime power set

  • [1] Kenichi Arai, Hiroyuki Okazaki, and Yasunari Shidama. Isomorphisms of direct products of finite cyclic groups. Formalized Mathematics, 20(4):343-347, 2012. doi:10.2478/v10037-012-0038-5.CrossrefGoogle Scholar

  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [3] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.Google Scholar

  • [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [12] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.Google Scholar

  • [13] Artur Korniłowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127-134, 1998.Google Scholar

  • [14] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.Google Scholar

  • [15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [16] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.Google Scholar

  • [17] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1): 103-108, 1993.Google Scholar

  • [18] Hiroyuki Okazaki, Hiroshi Yamazaki, and Yasunari Shidama. Isomorphisms of direct products of finite commutative groups. Formalized Mathematics, 21(1):65-74, 2013. doi:10.2478/forma-2013-0007.CrossrefGoogle Scholar

  • [19] Dariusz Surowik. Isomorphisms of cyclic groups. Some properties of cyclic groups. Formalized Mathematics, 3(1):29-32, 1992.Google Scholar

  • [20] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.Google Scholar

  • [21] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.Google Scholar

  • [22] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.Google Scholar

  • [23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Google Scholar

  • [25] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855-864, 1990.Google Scholar

  • [26] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.Google Scholar

  • [27] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.Google Scholar

  • [28] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.Google Scholar

  • [29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. Google Scholar

About the article

Published in Print: 2013-10-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/forma-2013-0022.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in