## Summary

This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

Show Summary Details# Formalized Mathematics

### (a computer assisted approach)

# Semiring of Sets: Examples

#### Open Access

## Summary

## References

## About the article

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2015: 0.134

Source Normalized Impact per Paper (SNIP) 2015: 0.686

Impact per Publication (IPP) 2015: 0.296

Roland Coghetto

This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

Keywords: semiring of sets

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[3] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics, 2(1):65-69, 1991.

[4] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5 (3):405-414, 1996.

[5] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263-269, 1992.

[6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[8] D.F. Goguadze. About the notion of semiring of sets. Mathematical Notes, 74:346-351, 2003. ISSN 0001-4346. doi:10.1023/A:1026102701631. [Crossref]

[9] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.

[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

[11] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.

[12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

[13] Jean Schmets. Théorie de la mesure. Notes de cours, Université de Liège, 146 pages, 2004.

[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.

[15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

[16] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.

[17] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990.

[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

**Published Online**: 2014-03-30

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, DOI: https://doi.org/10.2478/forma-2014-0009. Export Citation

## Comments (0)