Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 22, Issue 3 (Sep 2014)

Issues

Difference of Function on Vector Space over F

Kenichi Arai / Ken Wakabayashi / Hiroyuki Okazaki
Published Online: 2014-03-31 | DOI: https://doi.org/10.2478/forma-2014-0027

Summary

In [11], the definitions of forward difference, backward difference, and central difference as difference operations for functions on R were formalized. However, the definitions of forward difference, backward difference, and central difference for functions on vector spaces over F have not been formalized. In cryptology, these definitions are very important in evaluating the security of cryptographic systems [3], [10]. Differential cryptanalysis [4] that undertakes a general purpose attack against block ciphers [13] can be formalized using these definitions. In this article, we formalize the definitions of forward difference, backward difference, and central difference for functions on vector spaces over F. Moreover, we formalize some facts about these definitions.

Keywords : Mizar formalization; difference of function on vector space over F

References

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. Lecture Notes in Computer Science, 537:2-21, 1991.Google Scholar

  • [4] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round DES. Lecture Notes in Computer Science, 740:487-496, 1993.Google Scholar

  • [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [9] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.Google Scholar

  • [10] X. Lai. Higher order derivatives and differential cryptoanalysis. Communications and Cryptography, pages 227-233, 1994.Google Scholar

  • [11] Bo Li, Yan Zhang, and Xiquan Liang. Difference and difference quotient. Formalized Mathematics, 14(3):115-119, 2006. doi:10.2478/v10037-006-0014-z.CrossrefGoogle Scholar

  • [12] Michał Muzalewski and Wojciech Skaba. From loops to Abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.Google Scholar

  • [13] Hiroyuki Okazaki and Yasunari Shidama. Formalization of the data encryption standard. Formalized Mathematics, 20(2):125-146, 2012. doi:10.2478/v10037-012-0016-y.CrossrefGoogle Scholar

  • [14] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.Google Scholar

  • [15] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.Google Scholar

  • [16] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Google Scholar

  • [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [21] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992. Google Scholar

About the article

Received: 2014-09-26

Published Online: 2014-03-31

Published in Print: 2014-09-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, DOI: https://doi.org/10.2478/forma-2014-0027.

Export Citation

© by Kenichi Arai. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. (CC BY-SA 3.0) BY-SA 3.0

Comments (0)

Please log in or register to comment.
Log in