[1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(**2**):377–382, 1990.

[2] Grzegorz Bancerek. König’s theorem. *Formalized Mathematics*, 1(**3**):589–593, 1990.

[3] Grzegorz Bancerek. Monoids. *Formalized Mathematics*, 3(**2**):213–225, 1992.

[4] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41–46, 1990.

[5] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91–96, 1990.

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107–114, 1990.

[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. *Formalized Mathematics*, 5(**4**):485–492, 1996.

[8] Nicolas Bourbaki. *Elements of Mathematics. Algebra I. Chapters 1-3*. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.

[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529–536, 1990.

[10] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**): 55–65, 1990.

[11] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153–164, 1990.

[12] Czesław Byliński. Basic functions and operations on functions. *Formalized Mathematics*, 1(**1**):245–254, 1990.

[13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(**3**):521–527, 1990.

[14] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357–367, 1990.

[15] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47–53, 1990.

[16] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165–167, 1990.

[17] Artur Korniłowicz. The product of the families of the groups. *Formalized Mathematics*, 7(**1**):127–134, 1998.

[18] Serge Lang. *Algebra*. Springer, 3rd edition, 2005.

[19] Beata Madras. Product of family of universal algebras. *Formalized Mathematics*, 4(**1**): 103–108, 1993.

[20] Hiroyuki Okazaki, Kenichi Arai, and Yasunari Shidama. Normal subgroup of product of groups. *Formalized Mathematics*, 19(**1**):23–26, 2011. doi:10.2478/v10037-011-0004-7. [Crossref]

[21] Hiroyuki Okazaki, Hiroshi Yamazaki, and Yasunari Shidama. Isomorphisms of direct products of finite commutative groups. *Formalized Mathematics*, 21(**1**):65–74, 2013. doi:10.2478/forma-2013-0007. [Crossref]

[22] D. Robinson. *A Course in the Theory of Groups*. Springer New York, 2012.

[23] J.J. Rotman. *An Introduction to the Theory of Groups*. Springer, 1995.

[24] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1 (**2**):329–334, 1990.

[25] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(**3**):501–505, 1990.

[26] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. *Formalized Mathematics*, 1(**3**):569–573, 1990.

[27] Wojciech A. Trybulec. Groups. *Formalized Mathematics*, 1(**5**):821–827, 1990.

[28] Wojciech A. Trybulec. Subgroup and cosets of subgroups. *Formalized Mathematics*, 1(**5**): 855–864, 1990.

[29] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. *Formalized Mathematics*, 2(**1**):41–47, 1991.

[30] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. *Formalized Mathematics*, 2(**4**):573–578, 1991.

[31] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67–71, 1990.

[32] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1 (**1**):73–83, 1990.

[33] Katarzyna Zawadzka. Solvable groups. *Formalized Mathematics*, 5(**1**):145–147, 1996.

## Comments (0)