[1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(**2**):377–382, 1990.Google Scholar

[2] Grzegorz Bancerek. Curried and uncurried functions. *Formalized Mathematics*, 1(**3**): 537–541, 1990.Google Scholar

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41–46, 1990.Google Scholar

[4] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91–96, 1990.Google Scholar

[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107–114, 1990.Google Scholar

[6] Czesław Byliński. Binary operations. *Formalized Mathematics*, 1(**1**):175–180, 1990.Google Scholar

[7] Czesław Byliński. Binary operations applied to finite sequences. *Formalized Mathematics*, 1(**4**):643–649, 1990.Google Scholar

[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529–536, 1990.Google Scholar

[9] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**): 55–65, 1990.Google Scholar

[10] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153–164, 1990.Google Scholar

[11] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357–367, 1990.Google Scholar

[12] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47–53, 1990.Google Scholar

[13] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165–167, 1990.Google Scholar

[14] Wolfgang Ebeling. *Lattices and Codes*. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.Google Scholar

[15] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. ℤ-modules. *Formalized Mathematics*, 20(**1**):47–59, 2012. doi:10.2478/v10037-012-0007-z.CrossrefGoogle Scholar

[16] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free ℤ-module. *Formalized Mathematics*, 20(**4**):275–280, 2012. doi:10.2478/v10037-012-0033-x.CrossrefGoogle Scholar

[17] Katarzyna Jankowska. Matrices. Abelian group of matrices. *Formalized Mathematics*, 2 (**4**):475–480, 1991.Google Scholar

[18] Andrzej Kondracki. Basic properties of rational numbers. *Formalized Mathematics*, 1(**5**): 841–845, 1990.Google Scholar

[19] Jarosław Kotowicz. Bilinear functionals in vector spaces. *Formalized Mathematics*, 11(**1**): 69–86, 2003.Google Scholar

[20] Jarosław Kotowicz. Partial functions from a domain to a domain. *Formalized Mathematics*, 1(**4**):697–702, 1990.Google Scholar

[21] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(**2**):335–342, 1990.Google Scholar

[22] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. *The International Series in Engineering and Computer Science*, 2002.Google Scholar

[23] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. *Formalized Mathematics*, 9(**2**):363–371, 2001.Google Scholar

[24] Robert Milewski. Associated matrix of linear map. *Formalized Mathematics*, 5(**3**):339–345, 1996.Google Scholar

[25] Michał Muzalewski. Rings and modules – part II. *Formalized Mathematics*, 2(**4**):579–585, 1991.Google Scholar

[26] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. *Formalized Mathematics*, 4(**1**):29–34, 1993.Google Scholar

[27] Karol Pąk and Andrzej Trybulec. Laplace expansion. *Formalized Mathematics*, 15(**3**): 143–150, 2007. doi:10.2478/v10037-007-0016-5.CrossrefGoogle Scholar

[28] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. *Formalized Mathematics*, 8(**1**):29–34, 1999.Google Scholar

[29] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. *Formalized Mathematics*, 15(**3**):127–136, 2007. doi:10.2478/v10037-007-0014-7.CrossrefGoogle Scholar

[30] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1 (**2**):329–334, 1990.Google Scholar

[31] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(**3**):501–505, 1990.Google Scholar

[32] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. *Formalized Mathematics*, 1(**3**):569–573, 1990.Google Scholar

[33] Wojciech A. Trybulec. Pigeon hole principle. *Formalized Mathematics*, 1(**3**):575–579, 1990.Google Scholar

[34] Wojciech A. Trybulec. Groups. *Formalized Mathematics*, 1(**5**):821–827, 1990.Google Scholar

[35] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(**2**):291–296, 1990.Google Scholar

[36] Wojciech A. Trybulec. Linear combinations in vector space. *Formalized Mathematics*, 1(**5**):877–882, 1990.Google Scholar

[37] Wojciech A. Trybulec. Basis of vector space. *Formalized Mathematics*, 1(**5**):883–885, 1990.Google Scholar

[38] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67–71, 1990.Google Scholar

[39] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1 (**1**):73–83, 1990.Google Scholar

[40] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181–186, 1990.Google Scholar

[41] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. *Formalized Mathematics*, 3(**2**):205–211, 1992.Google Scholar

[42] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. *Formalized Mathematics*, 4(**1**):1–8, 1993.Google Scholar

## Comments (0)